Files
crewAI/tests/tools/test_tool_usage.py
2025-01-09 16:47:53 -05:00

234 lines
7.0 KiB
Python

import json
import random
from unittest.mock import MagicMock
import pytest
from pydantic import BaseModel, Field
from crewai import Agent, Task
from crewai.tools import BaseTool
from crewai.tools.tool_usage import ToolUsage
class RandomNumberToolInput(BaseModel):
min_value: int = Field(
..., description="The minimum value of the range (inclusive)"
)
max_value: int = Field(
..., description="The maximum value of the range (inclusive)"
)
class RandomNumberTool(BaseTool):
name: str = "Random Number Generator"
description: str = "Generates a random number within a specified range"
args_schema: type[BaseModel] = RandomNumberToolInput
def _run(self, min_value: int, max_value: int) -> int:
return random.randint(min_value, max_value)
# Example agent and task
example_agent = Agent(
role="Number Generator",
goal="Generate random numbers for various purposes",
backstory="You are an AI agent specialized in generating random numbers within specified ranges.",
tools=[RandomNumberTool()],
verbose=True,
)
example_task = Task(
description="Generate a random number between 1 and 100",
expected_output="A random number between 1 and 100",
agent=example_agent,
)
def test_random_number_tool_range():
tool = RandomNumberTool()
result = tool._run(1, 10)
assert 1 <= result <= 10
def test_random_number_tool_invalid_range():
tool = RandomNumberTool()
with pytest.raises(ValueError):
tool._run(10, 1) # min_value > max_value
def test_random_number_tool_schema():
tool = RandomNumberTool()
# Get the schema using model_json_schema()
schema = tool.args_schema.model_json_schema()
# Convert the schema to a string
schema_str = json.dumps(schema)
# Check if the schema string contains the expected fields
assert "min_value" in schema_str
assert "max_value" in schema_str
# Parse the schema string back to a dictionary
schema_dict = json.loads(schema_str)
# Check if the schema contains the correct field types
assert schema_dict["properties"]["min_value"]["type"] == "integer"
assert schema_dict["properties"]["max_value"]["type"] == "integer"
# Check if the schema contains the field descriptions
assert (
"minimum value" in schema_dict["properties"]["min_value"]["description"].lower()
)
assert (
"maximum value" in schema_dict["properties"]["max_value"]["description"].lower()
)
def test_tool_usage_render():
tool = RandomNumberTool()
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[tool],
original_tools=[tool],
tools_description="Sample tool for testing",
tools_names="random_number_generator",
task=MagicMock(),
function_calling_llm=MagicMock(),
agent=MagicMock(),
action=MagicMock(),
)
rendered = tool_usage._render()
# Updated checks to match the actual output
assert "Tool Name: Random Number Generator" in rendered
assert "Tool Arguments:" in rendered
assert (
"'min_value': {'description': 'The minimum value of the range (inclusive)', 'type': 'int'}"
in rendered
)
assert (
"'max_value': {'description': 'The maximum value of the range (inclusive)', 'type': 'int'}"
in rendered
)
assert (
"Tool Description: Generates a random number within a specified range"
in rendered
)
assert (
"Tool Name: Random Number Generator\nTool Arguments: {'min_value': {'description': 'The minimum value of the range (inclusive)', 'type': 'int'}, 'max_value': {'description': 'The maximum value of the range (inclusive)', 'type': 'int'}}\nTool Description: Generates a random number within a specified range"
in rendered
)
def test_validate_tool_input_booleans_and_none():
# Create a ToolUsage instance with mocks
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[],
original_tools=[],
tools_description="",
tools_names="",
task=MagicMock(),
function_calling_llm=MagicMock(),
agent=MagicMock(),
action=MagicMock(),
)
# Input with booleans and None
tool_input = '{"key1": True, "key2": False, "key3": None}'
expected_arguments = {"key1": True, "key2": False, "key3": None}
arguments = tool_usage._validate_tool_input(tool_input)
assert arguments == expected_arguments
def test_validate_tool_input_mixed_types():
# Create a ToolUsage instance with mocks
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[],
original_tools=[],
tools_description="",
tools_names="",
task=MagicMock(),
function_calling_llm=MagicMock(),
agent=MagicMock(),
action=MagicMock(),
)
# Input with mixed types
tool_input = '{"number": 123, "text": "Some text", "flag": True}'
expected_arguments = {"number": 123, "text": "Some text", "flag": True}
arguments = tool_usage._validate_tool_input(tool_input)
assert arguments == expected_arguments
def test_validate_tool_input_single_quotes():
# Create a ToolUsage instance with mocks
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[],
original_tools=[],
tools_description="",
tools_names="",
task=MagicMock(),
function_calling_llm=MagicMock(),
agent=MagicMock(),
action=MagicMock(),
)
# Input with single quotes instead of double quotes
tool_input = "{'key': 'value', 'flag': True}"
expected_arguments = {"key": "value", "flag": True}
arguments = tool_usage._validate_tool_input(tool_input)
assert arguments == expected_arguments
def test_validate_tool_input_invalid_json_repairable():
# Create a ToolUsage instance with mocks
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[],
original_tools=[],
tools_description="",
tools_names="",
task=MagicMock(),
function_calling_llm=MagicMock(),
agent=MagicMock(),
action=MagicMock(),
)
# Invalid JSON input that can be repaired
tool_input = '{"key": "value", "list": [1, 2, 3,]}'
expected_arguments = {"key": "value", "list": [1, 2, 3]}
arguments = tool_usage._validate_tool_input(tool_input)
assert arguments == expected_arguments
def test_validate_tool_input_with_special_characters():
# Create a ToolUsage instance with mocks
tool_usage = ToolUsage(
tools_handler=MagicMock(),
tools=[],
original_tools=[],
tools_description="",
tools_names="",
task=MagicMock(),
function_calling_llm=MagicMock(),
agent=MagicMock(),
action=MagicMock(),
)
# Input with special characters
tool_input = '{"message": "Hello, world! \u263A", "valid": True}'
expected_arguments = {"message": "Hello, world! ☺", "valid": True}
arguments = tool_usage._validate_tool_input(tool_input)
assert arguments == expected_arguments