Files
crewAI/tests/knowledge/knowledge_test.py
Lorenze Jay b3185ad90c Feat/docling-support (#1763)
* added tool for docling support

* docling support installation

* use file_paths instead of file_path

* fix import

* organized imports

* run_type docs

* needs to be list

* fixed logic

* logged but file_path is backwards compatible

* use file_paths instead of file_path 2

* added test for multiple sources for file_paths

* fix run-types

* enabling local files to work and type cleanup

* linted

* fix test and types

* fixed run types

* fix types

* renamed to CrewDoclingSource

* linted

* added docs

* resolve conflicts

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2024-12-23 13:19:58 -05:00

587 lines
26 KiB
Python

"""Test Knowledge creation and querying functionality."""
from pathlib import Path
from typing import List, Union
from unittest.mock import patch
import pytest
from crewai.knowledge.source.crew_docling_source import CrewDoclingSource
from crewai.knowledge.source.csv_knowledge_source import CSVKnowledgeSource
from crewai.knowledge.source.excel_knowledge_source import ExcelKnowledgeSource
from crewai.knowledge.source.json_knowledge_source import JSONKnowledgeSource
from crewai.knowledge.source.pdf_knowledge_source import PDFKnowledgeSource
from crewai.knowledge.source.string_knowledge_source import StringKnowledgeSource
from crewai.knowledge.source.text_file_knowledge_source import TextFileKnowledgeSource
@pytest.fixture(autouse=True)
def mock_vector_db():
"""Mock vector database operations."""
with patch("crewai.knowledge.storage.knowledge_storage.KnowledgeStorage") as mock:
# Mock the query method to return a predefined response
instance = mock.return_value
instance.query.return_value = [
{
"context": "Brandon's favorite color is blue and he likes Mexican food.",
"score": 0.9,
}
]
instance.reset.return_value = None
yield instance
@pytest.fixture(autouse=True)
def reset_knowledge_storage(mock_vector_db):
"""Fixture to reset knowledge storage before each test."""
yield
def test_single_short_string(mock_vector_db):
# Create a knowledge base with a single short string
content = "Brandon's favorite color is blue and he likes Mexican food."
string_source = StringKnowledgeSource(
content=content, metadata={"preference": "personal"}
)
mock_vector_db.sources = [string_source]
mock_vector_db.query.return_value = [{"context": content, "score": 0.9}]
# Perform a query
query = "What is Brandon's favorite color?"
results = mock_vector_db.query(query)
# Assert that the results contain the expected information
assert any("blue" in result["context"].lower() for result in results)
# Verify the mock was called
mock_vector_db.query.assert_called_once()
# @pytest.mark.vcr(filter_headers=["authorization"])
def test_single_2k_character_string(mock_vector_db):
# Create a 2k character string with various facts about Brandon
content = (
"Brandon is a software engineer who lives in San Francisco. "
"He enjoys hiking and often visits the trails in the Bay Area. "
"Brandon has a pet dog named Max, who is a golden retriever. "
"He loves reading science fiction books, and his favorite author is Isaac Asimov. "
"Brandon's favorite movie is Inception, and he enjoys watching it with his friends. "
"He is also a fan of Mexican cuisine, especially tacos and burritos. "
"Brandon plays the guitar and often performs at local open mic nights. "
"He is learning French and plans to visit Paris next year. "
"Brandon is passionate about technology and often attends tech meetups in the city. "
"He is also interested in AI and machine learning, and he is currently working on a project related to natural language processing. "
"Brandon's favorite color is blue, and he often wears blue shirts. "
"He enjoys cooking and often tries new recipes on weekends. "
"Brandon is a morning person and likes to start his day with a run in the park. "
"He is also a coffee enthusiast and enjoys trying different coffee blends. "
"Brandon is a member of a local book club and enjoys discussing books with fellow members. "
"He is also a fan of board games and often hosts game nights at his place. "
"Brandon is an advocate for environmental conservation and volunteers for local clean-up drives. "
"He is also a mentor for aspiring software developers and enjoys sharing his knowledge with others. "
"Brandon's favorite sport is basketball, and he often plays with his friends on weekends. "
"He is also a fan of the Golden State Warriors and enjoys watching their games. "
)
string_source = StringKnowledgeSource(
content=content, metadata={"preference": "personal"}
)
mock_vector_db.sources = [string_source]
mock_vector_db.query.return_value = [{"context": content, "score": 0.9}]
# Perform a query
query = "What is Brandon's favorite movie?"
results = mock_vector_db.query(query)
# Assert that the results contain the expected information
assert any("inception" in result["context"].lower() for result in results)
mock_vector_db.query.assert_called_once()
def test_multiple_short_strings(mock_vector_db):
# Create multiple short string sources
contents = [
"Brandon loves hiking.",
"Brandon has a dog named Max.",
"Brandon enjoys painting landscapes.",
]
string_sources = [
StringKnowledgeSource(content=content, metadata={"preference": "personal"})
for content in contents
]
# Mock the vector db query response
mock_vector_db.query.return_value = [
{"context": "Brandon has a dog named Max.", "score": 0.9}
]
mock_vector_db.sources = string_sources
# Perform a query
query = "What is the name of Brandon's pet?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any("max" in result["context"].lower() for result in results)
# Verify the mock was called
mock_vector_db.query.assert_called_once()
def test_multiple_2k_character_strings(mock_vector_db):
# Create multiple 2k character strings with various facts about Brandon
contents = [
(
"Brandon is a software engineer who lives in San Francisco. "
"He enjoys hiking and often visits the trails in the Bay Area. "
"Brandon has a pet dog named Max, who is a golden retriever. "
"He loves reading science fiction books, and his favorite author is Isaac Asimov. "
"Brandon's favorite movie is Inception, and he enjoys watching it with his friends. "
"He is also a fan of Mexican cuisine, especially tacos and burritos. "
"Brandon plays the guitar and often performs at local open mic nights. "
"He is learning French and plans to visit Paris next year. "
"Brandon is passionate about technology and often attends tech meetups in the city. "
"He is also interested in AI and machine learning, and he is currently working on a project related to natural language processing. "
"Brandon's favorite color is blue, and he often wears blue shirts. "
"He enjoys cooking and often tries new recipes on weekends. "
"Brandon is a morning person and likes to start his day with a run in the park. "
"He is also a coffee enthusiast and enjoys trying different coffee blends. "
"Brandon is a member of a local book club and enjoys discussing books with fellow members. "
"He is also a fan of board games and often hosts game nights at his place. "
"Brandon is an advocate for environmental conservation and volunteers for local clean-up drives. "
"He is also a mentor for aspiring software developers and enjoys sharing his knowledge with others. "
"Brandon's favorite sport is basketball, and he often plays with his friends on weekends. "
"He is also a fan of the Golden State Warriors and enjoys watching their games. "
)
* 2, # Repeat to ensure it's 2k characters
(
"Brandon loves traveling and has visited over 20 countries. "
"He is fluent in Spanish and often practices with his friends. "
"Brandon's favorite city is Barcelona, where he enjoys the architecture and culture. "
"He is a foodie and loves trying new cuisines, with a particular fondness for sushi. "
"Brandon is an avid cyclist and participates in local cycling events. "
"He is also a photographer and enjoys capturing landscapes and cityscapes. "
"Brandon is a tech enthusiast and follows the latest trends in gadgets and software. "
"He is also a fan of virtual reality and owns a VR headset. "
"Brandon's favorite book is 'The Hitchhiker's Guide to the Galaxy'. "
"He enjoys watching documentaries and learning about history and science. "
"Brandon is a coffee lover and has a collection of coffee mugs from different countries. "
"He is also a fan of jazz music and often attends live performances. "
"Brandon is a member of a local running club and participates in marathons. "
"He is also a volunteer at a local animal shelter and helps with dog walking. "
"Brandon's favorite holiday is Christmas, and he enjoys decorating his home. "
"He is also a fan of classic movies and has a collection of DVDs. "
"Brandon is a mentor for young professionals and enjoys giving career advice. "
"He is also a fan of puzzles and enjoys solving them in his free time. "
"Brandon's favorite sport is soccer, and he often plays with his friends. "
"He is also a fan of FC Barcelona and enjoys watching their matches. "
)
* 2, # Repeat to ensure it's 2k characters
]
string_sources = [
StringKnowledgeSource(content=content, metadata={"preference": "personal"})
for content in contents
]
mock_vector_db.sources = string_sources
mock_vector_db.query.return_value = [{"context": contents[1], "score": 0.9}]
# Perform a query
query = "What is Brandon's favorite book?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any(
"the hitchhiker's guide to the galaxy" in result["context"].lower()
for result in results
)
mock_vector_db.query.assert_called_once()
def test_single_short_file(mock_vector_db, tmpdir):
# Create a single short text file
content = "Brandon's favorite sport is basketball."
file_path = Path(tmpdir.join("short_file.txt"))
with open(file_path, "w") as f:
f.write(content)
file_source = TextFileKnowledgeSource(
file_paths=[file_path], metadata={"preference": "personal"}
)
mock_vector_db.sources = [file_source]
mock_vector_db.query.return_value = [{"context": content, "score": 0.9}]
# Perform a query
query = "What sport does Brandon like?"
results = mock_vector_db.query(query)
# Assert that the results contain the expected information
assert any("basketball" in result["context"].lower() for result in results)
mock_vector_db.query.assert_called_once()
def test_single_2k_character_file(mock_vector_db, tmpdir):
# Create a single 2k character text file with various facts about Brandon
content = (
"Brandon is a software engineer who lives in San Francisco. "
"He enjoys hiking and often visits the trails in the Bay Area. "
"Brandon has a pet dog named Max, who is a golden retriever. "
"He loves reading science fiction books, and his favorite author is Isaac Asimov. "
"Brandon's favorite movie is Inception, and he enjoys watching it with his friends. "
"He is also a fan of Mexican cuisine, especially tacos and burritos. "
"Brandon plays the guitar and often performs at local open mic nights. "
"He is learning French and plans to visit Paris next year. "
"Brandon is passionate about technology and often attends tech meetups in the city. "
"He is also interested in AI and machine learning, and he is currently working on a project related to natural language processing. "
"Brandon's favorite color is blue, and he often wears blue shirts. "
"He enjoys cooking and often tries new recipes on weekends. "
"Brandon is a morning person and likes to start his day with a run in the park. "
"He is also a coffee enthusiast and enjoys trying different coffee blends. "
"Brandon is a member of a local book club and enjoys discussing books with fellow members. "
"He is also a fan of board games and often hosts game nights at his place. "
"Brandon is an advocate for environmental conservation and volunteers for local clean-up drives. "
"He is also a mentor for aspiring software developers and enjoys sharing his knowledge with others. "
"Brandon's favorite sport is basketball, and he often plays with his friends on weekends. "
"He is also a fan of the Golden State Warriors and enjoys watching their games. "
) * 2 # Repeat to ensure it's 2k characters
file_path = Path(tmpdir.join("long_file.txt"))
with open(file_path, "w") as f:
f.write(content)
file_source = TextFileKnowledgeSource(
file_paths=[file_path], metadata={"preference": "personal"}
)
mock_vector_db.sources = [file_source]
mock_vector_db.query.return_value = [{"context": content, "score": 0.9}]
# Perform a query
query = "What is Brandon's favorite movie?"
results = mock_vector_db.query(query)
# Assert that the results contain the expected information
assert any("inception" in result["context"].lower() for result in results)
mock_vector_db.query.assert_called_once()
def test_multiple_short_files(mock_vector_db, tmpdir):
# Create multiple short text files
contents = [
{
"content": "Brandon works as a software engineer.",
"metadata": {"category": "profession", "source": "occupation"},
},
{
"content": "Brandon lives in New York.",
"metadata": {"category": "city", "source": "personal"},
},
{
"content": "Brandon enjoys cooking Italian food.",
"metadata": {"category": "hobby", "source": "personal"},
},
]
file_paths = []
for i, item in enumerate(contents):
file_path = Path(tmpdir.join(f"file_{i}.txt"))
with open(file_path, "w") as f:
f.write(item["content"])
file_paths.append((file_path, item["metadata"]))
file_sources = [
TextFileKnowledgeSource(file_paths=[path], metadata=metadata)
for path, metadata in file_paths
]
mock_vector_db.sources = file_sources
mock_vector_db.query.return_value = [
{"context": "Brandon lives in New York.", "score": 0.9}
]
# Perform a query
query = "What city does he reside in?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any("new york" in result["context"].lower() for result in results)
mock_vector_db.query.assert_called_once()
def test_multiple_2k_character_files(mock_vector_db, tmpdir):
# Create multiple 2k character text files with various facts about Brandon
contents = [
(
"Brandon loves traveling and has visited over 20 countries. "
"He is fluent in Spanish and often practices with his friends. "
"Brandon's favorite city is Barcelona, where he enjoys the architecture and culture. "
"He is a foodie and loves trying new cuisines, with a particular fondness for sushi. "
"Brandon is an avid cyclist and participates in local cycling events. "
"He is also a photographer and enjoys capturing landscapes and cityscapes. "
"Brandon is a tech enthusiast and follows the latest trends in gadgets and software. "
"He is also a fan of virtual reality and owns a VR headset. "
"Brandon's favorite book is 'The Hitchhiker's Guide to the Galaxy'. "
"He enjoys watching documentaries and learning about history and science. "
"Brandon is a coffee lover and has a collection of coffee mugs from different countries. "
"He is also a fan of jazz music and often attends live performances. "
"Brandon is a member of a local running club and participates in marathons. "
"He is also a volunteer at a local animal shelter and helps with dog walking. "
"Brandon's favorite holiday is Christmas, and he enjoys decorating his home. "
"He is also a fan of classic movies and has a collection of DVDs. "
"Brandon is a mentor for young professionals and enjoys giving career advice. "
"He is also a fan of puzzles and enjoys solving them in his free time. "
"Brandon's favorite sport is soccer, and he often plays with his friends. "
"He is also a fan of FC Barcelona and enjoys watching their matches. "
)
* 2, # Repeat to ensure it's 2k characters
(
"Brandon is a software engineer who lives in San Francisco. "
"He enjoys hiking and often visits the trails in the Bay Area. "
"Brandon has a pet dog named Max, who is a golden retriever. "
"He loves reading science fiction books, and his favorite author is Isaac Asimov. "
"Brandon's favorite movie is Inception, and he enjoys watching it with his friends. "
"He is also a fan of Mexican cuisine, especially tacos and burritos. "
"Brandon plays the guitar and often performs at local open mic nights. "
"He is learning French and plans to visit Paris next year. "
"Brandon is passionate about technology and often attends tech meetups in the city. "
"He is also interested in AI and machine learning, and he is currently working on a project related to natural language processing. "
"Brandon's favorite color is blue, and he often wears blue shirts. "
"He enjoys cooking and often tries new recipes on weekends. "
"Brandon is a morning person and likes to start his day with a run in the park. "
"He is also a coffee enthusiast and enjoys trying different coffee blends. "
"Brandon is a member of a local book club and enjoys discussing books with fellow members. "
"He is also a fan of board games and often hosts game nights at his place. "
"Brandon is an advocate for environmental conservation and volunteers for local clean-up drives. "
"He is also a mentor for aspiring software developers and enjoys sharing his knowledge with others. "
"Brandon's favorite sport is basketball, and he often plays with his friends on weekends. "
"He is also a fan of the Golden State Warriors and enjoys watching their games. "
)
* 2, # Repeat to ensure it's 2k characters
]
file_paths = []
for i, content in enumerate(contents):
file_path = Path(tmpdir.join(f"long_file_{i}.txt"))
with open(file_path, "w") as f:
f.write(content)
file_paths.append(file_path)
file_sources = [
TextFileKnowledgeSource(file_paths=[path], metadata={"preference": "personal"})
for path in file_paths
]
mock_vector_db.sources = file_sources
mock_vector_db.query.return_value = [
{
"context": "Brandon's favorite book is 'The Hitchhiker's Guide to the Galaxy'.",
"score": 0.9,
}
]
# Perform a query
query = "What is Brandon's favorite book?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any(
"the hitchhiker's guide to the galaxy" in result["context"].lower()
for result in results
)
mock_vector_db.query.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_hybrid_string_and_files(mock_vector_db, tmpdir):
# Create string sources
string_contents = [
"Brandon is learning French.",
"Brandon visited Paris last summer.",
]
string_sources = [
StringKnowledgeSource(content=content, metadata={"preference": "personal"})
for content in string_contents
]
# Create file sources
file_contents = [
"Brandon prefers tea over coffee.",
"Brandon's favorite book is 'The Alchemist'.",
]
file_paths = []
for i, content in enumerate(file_contents):
file_path = Path(tmpdir.join(f"file_{i}.txt"))
with open(file_path, "w") as f:
f.write(content)
file_paths.append(file_path)
file_sources = [
TextFileKnowledgeSource(file_paths=[path], metadata={"preference": "personal"})
for path in file_paths
]
# Combine string and file sources
mock_vector_db.sources = string_sources + file_sources
mock_vector_db.query.return_value = [{"context": file_contents[1], "score": 0.9}]
# Perform a query
query = "What is Brandon's favorite book?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any("the alchemist" in result["context"].lower() for result in results)
mock_vector_db.query.assert_called_once()
def test_pdf_knowledge_source(mock_vector_db):
# Get the directory of the current file
current_dir = Path(__file__).parent
# Construct the path to the PDF file
pdf_path = current_dir / "crewai_quickstart.pdf"
# Create a PDFKnowledgeSource
pdf_source = PDFKnowledgeSource(
file_paths=[pdf_path], metadata={"preference": "personal"}
)
mock_vector_db.sources = [pdf_source]
mock_vector_db.query.return_value = [
{"context": "crewai create crew latest-ai-development", "score": 0.9}
]
# Perform a query
query = "How do you create a crew?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any(
"crewai create crew latest-ai-development" in result["context"].lower()
for result in results
)
mock_vector_db.query.assert_called_once()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_csv_knowledge_source(mock_vector_db, tmpdir):
"""Test CSVKnowledgeSource with a simple CSV file."""
# Create a CSV file with sample data
csv_content = [
["Name", "Age", "City"],
["Brandon", "30", "New York"],
["Alice", "25", "Los Angeles"],
["Bob", "35", "Chicago"],
]
csv_path = Path(tmpdir.join("data.csv"))
with open(csv_path, "w", encoding="utf-8") as f:
for row in csv_content:
f.write(",".join(row) + "\n")
# Create a CSVKnowledgeSource
csv_source = CSVKnowledgeSource(
file_paths=[csv_path], metadata={"preference": "personal"}
)
mock_vector_db.sources = [csv_source]
mock_vector_db.query.return_value = [
{"context": "Brandon is 30 years old.", "score": 0.9}
]
# Perform a query
query = "How old is Brandon?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any("30" in result["context"] for result in results)
mock_vector_db.query.assert_called_once()
def test_json_knowledge_source(mock_vector_db, tmpdir):
"""Test JSONKnowledgeSource with a simple JSON file."""
# Create a JSON file with sample data
json_data = {
"people": [
{"name": "Brandon", "age": 30, "city": "New York"},
{"name": "Alice", "age": 25, "city": "Los Angeles"},
{"name": "Bob", "age": 35, "city": "Chicago"},
]
}
json_path = Path(tmpdir.join("data.json"))
with open(json_path, "w", encoding="utf-8") as f:
import json
json.dump(json_data, f)
# Create a JSONKnowledgeSource
json_source = JSONKnowledgeSource(
file_paths=[json_path], metadata={"preference": "personal"}
)
mock_vector_db.sources = [json_source]
mock_vector_db.query.return_value = [
{"context": "Alice lives in Los Angeles.", "score": 0.9}
]
# Perform a query
query = "Where does Alice reside?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any("los angeles" in result["context"].lower() for result in results)
mock_vector_db.query.assert_called_once()
def test_excel_knowledge_source(mock_vector_db, tmpdir):
"""Test ExcelKnowledgeSource with a simple Excel file."""
# Create an Excel file with sample data
import pandas as pd
excel_data = {
"Name": ["Brandon", "Alice", "Bob"],
"Age": [30, 25, 35],
"City": ["New York", "Los Angeles", "Chicago"],
}
df = pd.DataFrame(excel_data)
excel_path = Path(tmpdir.join("data.xlsx"))
df.to_excel(excel_path, index=False)
# Create an ExcelKnowledgeSource
excel_source = ExcelKnowledgeSource(
file_paths=[excel_path], metadata={"preference": "personal"}
)
mock_vector_db.sources = [excel_source]
mock_vector_db.query.return_value = [
{"context": "Brandon is 30 years old.", "score": 0.9}
]
# Perform a query
query = "What is Brandon's age?"
results = mock_vector_db.query(query)
# Assert that the correct information is retrieved
assert any("30" in result["context"] for result in results)
mock_vector_db.query.assert_called_once()
def test_docling_source(mock_vector_db):
docling_source = CrewDoclingSource(
file_paths=[
"https://lilianweng.github.io/posts/2024-11-28-reward-hacking/",
],
)
mock_vector_db.sources = [docling_source]
mock_vector_db.query.return_value = [
{
"context": "Reward hacking is a technique used to improve the performance of reinforcement learning agents.",
"score": 0.9,
}
]
# Perform a query
query = "What is reward hacking?"
results = mock_vector_db.query(query)
assert any("reward hacking" in result["context"].lower() for result in results)
mock_vector_db.query.assert_called_once()
def test_multiple_docling_sources():
urls: List[Union[Path, str]] = [
"https://lilianweng.github.io/posts/2024-11-28-reward-hacking/",
"https://lilianweng.github.io/posts/2024-07-07-hallucination/",
]
docling_source = CrewDoclingSource(file_paths=urls)
assert docling_source.file_paths == urls
assert docling_source.content is not None
def test_docling_source_with_local_file():
current_dir = Path(__file__).parent
pdf_path = current_dir / "crewai_quickstart.pdf"
docling_source = CrewDoclingSource(file_paths=[pdf_path])
assert docling_source.file_paths == [pdf_path]
assert docling_source.content is not None