Files
crewAI/crewai_tools/tools/pdf_search_tool/pdf_search_tool.py
Greyson Lalonde e16606672a Squashed 'packages/tools/' content from commit 78317b9c
git-subtree-dir: packages/tools
git-subtree-split: 78317b9c127f18bd040c1d77e3c0840cdc9a5b38
2025-09-12 21:58:02 -04:00

56 lines
1.6 KiB
Python

from typing import Optional, Type
from pydantic import BaseModel, Field
try:
from embedchain.models.data_type import DataType
EMBEDCHAIN_AVAILABLE = True
except ImportError:
EMBEDCHAIN_AVAILABLE = False
from ..rag.rag_tool import RagTool
class FixedPDFSearchToolSchema(BaseModel):
"""Input for PDFSearchTool."""
query: str = Field(
..., description="Mandatory query you want to use to search the PDF's content"
)
class PDFSearchToolSchema(FixedPDFSearchToolSchema):
"""Input for PDFSearchTool."""
pdf: str = Field(..., description="File path or URL of a PDF file to be searched")
class PDFSearchTool(RagTool):
name: str = "Search a PDF's content"
description: str = (
"A tool that can be used to semantic search a query from a PDF's content."
)
args_schema: Type[BaseModel] = PDFSearchToolSchema
def __init__(self, pdf: Optional[str] = None, **kwargs):
super().__init__(**kwargs)
if pdf is not None:
self.add(pdf)
self.description = f"A tool that can be used to semantic search a query the {pdf} PDF's content."
self.args_schema = FixedPDFSearchToolSchema
self._generate_description()
def add(self, pdf: str) -> None:
if not EMBEDCHAIN_AVAILABLE:
raise ImportError("embedchain is not installed. Please install it with `pip install crewai-tools[embedchain]`")
super().add(pdf, data_type=DataType.PDF_FILE)
def _run(
self,
query: str,
pdf: Optional[str] = None,
) -> str:
if pdf is not None:
self.add(pdf)
return super()._run(query=query)