mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-24 15:48:23 +00:00
git-subtree-dir: packages/tools git-subtree-split: 78317b9c127f18bd040c1d77e3c0840cdc9a5b38
63 lines
1.9 KiB
Python
63 lines
1.9 KiB
Python
from typing import Any, Optional, Type
|
|
|
|
try:
|
|
from embedchain.models.data_type import DataType
|
|
EMBEDCHAIN_AVAILABLE = True
|
|
except ImportError:
|
|
EMBEDCHAIN_AVAILABLE = False
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from ..rag.rag_tool import RagTool
|
|
|
|
|
|
class FixedDOCXSearchToolSchema(BaseModel):
|
|
"""Input for DOCXSearchTool."""
|
|
|
|
docx: Optional[str] = Field(
|
|
..., description="File path or URL of a DOCX file to be searched"
|
|
)
|
|
search_query: str = Field(
|
|
...,
|
|
description="Mandatory search query you want to use to search the DOCX's content",
|
|
)
|
|
|
|
|
|
class DOCXSearchToolSchema(FixedDOCXSearchToolSchema):
|
|
"""Input for DOCXSearchTool."""
|
|
|
|
search_query: str = Field(
|
|
...,
|
|
description="Mandatory search query you want to use to search the DOCX's content",
|
|
)
|
|
|
|
|
|
class DOCXSearchTool(RagTool):
|
|
name: str = "Search a DOCX's content"
|
|
description: str = (
|
|
"A tool that can be used to semantic search a query from a DOCX's content."
|
|
)
|
|
args_schema: Type[BaseModel] = DOCXSearchToolSchema
|
|
|
|
def __init__(self, docx: Optional[str] = None, **kwargs):
|
|
super().__init__(**kwargs)
|
|
if docx is not None:
|
|
self.add(docx)
|
|
self.description = f"A tool that can be used to semantic search a query the {docx} DOCX's content."
|
|
self.args_schema = FixedDOCXSearchToolSchema
|
|
self._generate_description()
|
|
|
|
def add(self, docx: str) -> None:
|
|
if not EMBEDCHAIN_AVAILABLE:
|
|
raise ImportError("embedchain is not installed. Please install it with `pip install crewai-tools[embedchain]`")
|
|
super().add(docx, data_type=DataType.DOCX)
|
|
|
|
def _run(
|
|
self,
|
|
search_query: str,
|
|
docx: Optional[str] = None,
|
|
) -> Any:
|
|
if docx is not None:
|
|
self.add(docx)
|
|
return super()._run(query=search_query)
|