Files
crewAI/lib/crewai/tests/llms/openai/test_openai.py
Greyson LaLonde e134e5305b Gl/feat/a2a refactor (#3793)
* feat: agent metaclass, refactor a2a to wrappers

* feat: a2a schemas and utils

* chore: move agent class, update imports

* refactor: organize imports to avoid circularity, add a2a to console

* feat: pass response_model through call chain

* feat: add standard openapi spec serialization to tools and structured output

* feat: a2a events

* chore: add a2a to pyproject

* docs: minimal base for learn docs

* fix: adjust a2a conversation flow, allow llm to decide exit until max_retries

* fix: inject agent skills into initial prompt

* fix: format agent card as json in prompt

* refactor: simplify A2A agent prompt formatting and improve skill display

* chore: wide cleanup

* chore: cleanup logic, add auth cache, use json for messages in prompt

* chore: update docs

* fix: doc snippets formatting

* feat: optimize A2A agent card fetching and improve error reporting

* chore: move imports to top of file

* chore: refactor hasattr check

* chore: add httpx-auth, update lockfile

* feat: create base public api

* chore: cleanup modules, add docstrings, types

* fix: exclude extra fields in prompt

* chore: update docs

* tests: update to correct import

* chore: lint for ruff, add missing import

* fix: tweak openai streaming logic for response model

* tests: add reimport for test

* tests: add reimport for test

* fix: don't set a2a attr if not set

* fix: don't set a2a attr if not set

* chore: update cassettes

* tests: fix tests

* fix: use instructor and dont pass response_format for litellm

* chore: consolidate event listeners, add typing

* fix: address race condition in test, update cassettes

* tests: add correct mocks, rerun cassette for json

* tests: update cassette

* chore: regenerate cassette after new run

* fix: make token manager access-safe

* fix: make token manager access-safe

* merge

* chore: update test and cassete for output pydantic

* fix: tweak to disallow deadlock

* chore: linter

* fix: adjust event ordering for threading

* fix: use conditional for batch check

* tests: tweak for emission

* tests: simplify api + event check

* fix: ensure non-function calling llms see json formatted string

* tests: tweak message comparison

* fix: use internal instructor for litellm structure responses

---------

Co-authored-by: Mike Plachta <mike@crewai.com>
2025-10-31 18:42:03 -07:00

530 lines
17 KiB
Python

import os
import sys
import types
from unittest.mock import patch, MagicMock
import openai
import pytest
from crewai.llm import LLM
from crewai.llms.providers.openai.completion import OpenAICompletion
from crewai.crew import Crew
from crewai.agent import Agent
from crewai.task import Task
from crewai.cli.constants import DEFAULT_LLM_MODEL
def test_openai_completion_is_used_when_openai_provider():
"""
Test that OpenAICompletion from completion.py is used when LLM uses provider 'openai'
"""
llm = LLM(model="openai/gpt-4o")
assert llm.__class__.__name__ == "OpenAICompletion"
assert llm.provider == "openai"
assert llm.model == "gpt-4o"
def test_openai_completion_is_used_when_no_provider_prefix():
"""
Test that OpenAICompletion is used when no provider prefix is given (defaults to openai)
"""
llm = LLM(model="gpt-4o")
from crewai.llms.providers.openai.completion import OpenAICompletion
assert isinstance(llm, OpenAICompletion)
assert llm.provider == "openai"
assert llm.model == "gpt-4o"
@pytest.mark.vcr(filter_headers=["authorization"])
def test_openai_is_default_provider_without_explicit_llm_set_on_agent():
"""
Test that OpenAI is the default provider when no explicit LLM is set on the agent
"""
agent = Agent(
role="Research Assistant",
goal="Find information about the population of Tokyo",
backstory="You are a helpful research assistant.",
)
task = Task(
description="Find information about the population of Tokyo",
expected_output="The population of Tokyo is 10 million",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff()
assert crew.agents[0].llm.__class__.__name__ == "OpenAICompletion"
assert crew.agents[0].llm.model == DEFAULT_LLM_MODEL
def test_openai_completion_module_is_imported():
"""
Test that the completion module is properly imported when using OpenAI provider
"""
module_name = "crewai.llms.providers.openai.completion"
# Remove module from cache if it exists
if module_name in sys.modules:
del sys.modules[module_name]
# Create LLM instance - this should trigger the import
LLM(model="openai/gpt-4o")
# Verify the module was imported
assert module_name in sys.modules
completion_mod = sys.modules[module_name]
assert isinstance(completion_mod, types.ModuleType)
# Verify the class exists in the module
assert hasattr(completion_mod, 'OpenAICompletion')
def test_native_openai_raises_error_when_initialization_fails():
"""
Test that LLM raises ImportError when native OpenAI completion fails to initialize.
This ensures we don't silently fall back when there's a configuration issue.
"""
# Mock the _get_native_provider to return a failing class
with patch('crewai.llm.LLM._get_native_provider') as mock_get_provider:
class FailingCompletion:
def __init__(self, *args, **kwargs):
raise Exception("Native SDK failed")
mock_get_provider.return_value = FailingCompletion
# This should raise ImportError, not fall back to LiteLLM
with pytest.raises(ImportError) as excinfo:
LLM(model="openai/gpt-4o")
assert "Error importing native provider" in str(excinfo.value)
assert "Native SDK failed" in str(excinfo.value)
def test_openai_completion_initialization_parameters():
"""
Test that OpenAICompletion is initialized with correct parameters
"""
llm = LLM(
model="openai/gpt-4o",
temperature=0.7,
max_tokens=1000,
api_key="test-key"
)
from crewai.llms.providers.openai.completion import OpenAICompletion
assert isinstance(llm, OpenAICompletion)
assert llm.model == "gpt-4o"
assert llm.temperature == 0.7
assert llm.max_tokens == 1000
def test_openai_completion_call():
"""
Test that OpenAICompletion call method works
"""
llm = LLM(model="openai/gpt-4o")
# Mock the call method on the instance
with patch.object(llm, 'call', return_value="Hello! I'm ready to help.") as mock_call:
result = llm.call("Hello, how are you?")
assert result == "Hello! I'm ready to help."
mock_call.assert_called_once_with("Hello, how are you?")
def test_openai_completion_called_during_crew_execution():
"""
Test that OpenAICompletion.call is actually invoked when running a crew
"""
# Create the LLM instance first
openai_llm = LLM(model="openai/gpt-4o")
# Mock the call method on the specific instance
with patch.object(openai_llm, 'call', return_value="Tokyo has 14 million people.") as mock_call:
# Create agent with explicit LLM configuration
agent = Agent(
role="Research Assistant",
goal="Find population info",
backstory="You research populations.",
llm=openai_llm,
)
task = Task(
description="Find Tokyo population",
expected_output="Population number",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
# Verify mock was called
assert mock_call.called
assert "14 million" in str(result)
def test_openai_completion_call_arguments():
"""
Test that OpenAICompletion.call is invoked with correct arguments
"""
# Create LLM instance first (like working tests)
openai_llm = LLM(model="openai/gpt-4o")
# Mock the instance method (like working tests)
with patch.object(openai_llm, 'call') as mock_call:
mock_call.return_value = "Task completed successfully."
agent = Agent(
role="Test Agent",
goal="Complete a simple task",
backstory="You are a test agent.",
llm=openai_llm # Use same instance
)
task = Task(
description="Say hello world",
expected_output="Hello world",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff()
# Verify call was made
assert mock_call.called
# Check the arguments passed to the call method
call_args = mock_call.call_args
assert call_args is not None
# The first argument should be the messages
messages = call_args[0][0] # First positional argument
assert isinstance(messages, (str, list))
# Verify that the task description appears in the messages
if isinstance(messages, str):
assert "hello world" in messages.lower()
elif isinstance(messages, list):
message_content = str(messages).lower()
assert "hello world" in message_content
def test_multiple_openai_calls_in_crew():
"""
Test that OpenAICompletion.call is invoked multiple times for multiple tasks
"""
# Create LLM instance first
openai_llm = LLM(model="openai/gpt-4o")
# Mock the instance method
with patch.object(openai_llm, 'call') as mock_call:
mock_call.return_value = "Task completed."
agent = Agent(
role="Multi-task Agent",
goal="Complete multiple tasks",
backstory="You can handle multiple tasks.",
llm=openai_llm # Use same instance
)
task1 = Task(
description="First task",
expected_output="First result",
agent=agent,
)
task2 = Task(
description="Second task",
expected_output="Second result",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task1, task2]
)
crew.kickoff()
# Verify multiple calls were made
assert mock_call.call_count >= 2 # At least one call per task
# Verify each call had proper arguments
for call in mock_call.call_args_list:
assert len(call[0]) > 0 # Has positional arguments
messages = call[0][0]
assert messages is not None
def test_openai_completion_with_tools():
"""
Test that OpenAICompletion.call is invoked with tools when agent has tools
"""
from crewai.tools import tool
@tool
def sample_tool(query: str) -> str:
"""A sample tool for testing"""
return f"Tool result for: {query}"
# Create LLM instance first
openai_llm = LLM(model="openai/gpt-4o")
# Mock the instance method (not the class method)
with patch.object(openai_llm, 'call') as mock_call:
mock_call.return_value = "Task completed with tools."
agent = Agent(
role="Tool User",
goal="Use tools to complete tasks",
backstory="You can use tools.",
llm=openai_llm, # Use same instance
tools=[sample_tool]
)
task = Task(
description="Use the sample tool",
expected_output="Tool usage result",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff()
assert mock_call.called
call_args = mock_call.call_args
call_kwargs = call_args[1] if len(call_args) > 1 else {}
if 'tools' in call_kwargs:
assert call_kwargs['tools'] is not None
assert len(call_kwargs['tools']) > 0
@pytest.mark.vcr(filter_headers=["authorization"])
def test_openai_completion_call_returns_usage_metrics():
"""
Test that OpenAICompletion.call returns usage metrics
"""
agent = Agent(
role="Research Assistant",
goal="Find information about the population of Tokyo",
backstory="You are a helpful research assistant.",
llm=LLM(model="openai/gpt-4o"),
verbose=True,
)
task = Task(
description="Find information about the population of Tokyo",
expected_output="The population of Tokyo is 10 million",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
assert result.token_usage is not None
assert result.token_usage.total_tokens == 289
assert result.token_usage.prompt_tokens == 173
assert result.token_usage.completion_tokens == 116
assert result.token_usage.successful_requests == 1
assert result.token_usage.cached_prompt_tokens == 0
def test_openai_raises_error_when_model_not_supported():
"""Test that OpenAICompletion raises ValueError when model not supported"""
with patch('crewai.llms.providers.openai.completion.OpenAI') as mock_openai_class:
mock_client = MagicMock()
mock_openai_class.return_value = mock_client
mock_client.chat.completions.create.side_effect = openai.NotFoundError(
message="The model `model-doesnt-exist` does not exist",
response=MagicMock(),
body={}
)
llm = LLM(model="openai/model-doesnt-exist")
with pytest.raises(ValueError, match="Model.*not found"):
llm.call("Hello")
def test_openai_client_setup_with_extra_arguments():
"""
Test that OpenAICompletion is initialized with correct parameters
"""
llm = LLM(
model="openai/gpt-4o",
temperature=0.7,
max_tokens=1000,
top_p=0.5,
max_retries=3,
timeout=30
)
# Check that model parameters are stored on the LLM instance
assert llm.temperature == 0.7
assert llm.max_tokens == 1000
assert llm.top_p == 0.5
# Check that client parameters are properly configured
assert llm.client.max_retries == 3
assert llm.client.timeout == 30
# Test that parameters are properly used in API calls
with patch.object(llm.client.chat.completions, 'create') as mock_create:
mock_create.return_value = MagicMock(
choices=[MagicMock(message=MagicMock(content="test response", tool_calls=None))],
usage=MagicMock(prompt_tokens=10, completion_tokens=20, total_tokens=30)
)
llm.call("Hello")
# Verify the API was called with the right parameters
call_args = mock_create.call_args[1] # keyword arguments
assert call_args['temperature'] == 0.7
assert call_args['max_tokens'] == 1000
assert call_args['top_p'] == 0.5
assert call_args['model'] == 'gpt-4o'
def test_extra_arguments_are_passed_to_openai_completion():
"""
Test that extra arguments are passed to OpenAICompletion
"""
llm = LLM(model="openai/gpt-4o", temperature=0.7, max_tokens=1000, top_p=0.5, max_retries=3)
with patch.object(llm.client.chat.completions, 'create') as mock_create:
mock_create.return_value = MagicMock(
choices=[MagicMock(message=MagicMock(content="test response", tool_calls=None))],
usage=MagicMock(prompt_tokens=10, completion_tokens=20, total_tokens=30)
)
llm.call("Hello, how are you?")
assert mock_create.called
call_kwargs = mock_create.call_args[1]
assert call_kwargs['temperature'] == 0.7
assert call_kwargs['max_tokens'] == 1000
assert call_kwargs['top_p'] == 0.5
assert call_kwargs['model'] == 'gpt-4o'
def test_openai_get_client_params_with_api_base():
"""
Test that _get_client_params correctly converts api_base to base_url
"""
llm = OpenAICompletion(
model="gpt-4o",
api_base="https://custom.openai.com/v1",
)
client_params = llm._get_client_params()
assert client_params["base_url"] == "https://custom.openai.com/v1"
def test_openai_get_client_params_with_base_url_priority():
"""
Test that base_url takes priority over api_base in _get_client_params
"""
llm = OpenAICompletion(
model="gpt-4o",
base_url="https://priority.openai.com/v1",
api_base="https://fallback.openai.com/v1",
)
client_params = llm._get_client_params()
assert client_params["base_url"] == "https://priority.openai.com/v1"
def test_openai_get_client_params_with_env_var():
"""
Test that _get_client_params uses OPENAI_BASE_URL environment variable as fallback
"""
with patch.dict(os.environ, {
"OPENAI_BASE_URL": "https://env.openai.com/v1",
}):
llm = OpenAICompletion(model="gpt-4o")
client_params = llm._get_client_params()
assert client_params["base_url"] == "https://env.openai.com/v1"
def test_openai_get_client_params_priority_order():
"""
Test the priority order: base_url > api_base > OPENAI_BASE_URL env var
"""
with patch.dict(os.environ, {
"OPENAI_BASE_URL": "https://env.openai.com/v1",
}):
# Test base_url beats api_base and env var
llm1 = OpenAICompletion(
model="gpt-4o",
base_url="https://base-url.openai.com/v1",
api_base="https://api-base.openai.com/v1",
)
params1 = llm1._get_client_params()
assert params1["base_url"] == "https://base-url.openai.com/v1"
# Test api_base beats env var when base_url is None
llm2 = OpenAICompletion(
model="gpt-4o",
api_base="https://api-base.openai.com/v1",
)
params2 = llm2._get_client_params()
assert params2["base_url"] == "https://api-base.openai.com/v1"
# Test env var is used when both base_url and api_base are None
llm3 = OpenAICompletion(model="gpt-4o")
params3 = llm3._get_client_params()
assert params3["base_url"] == "https://env.openai.com/v1"
def test_openai_get_client_params_no_base_url():
"""
Test that _get_client_params works correctly when no base_url is specified
"""
llm = OpenAICompletion(model="gpt-4o")
client_params = llm._get_client_params()
# When no base_url is provided, it should not be in the params (filtered out as None)
assert "base_url" not in client_params or client_params.get("base_url") is None
def test_openai_streaming_with_response_model():
"""
Test that streaming with response_model works correctly and doesn't call invalid API methods.
This test verifies the fix for the bug where streaming with response_model attempted to call
self.client.responses.stream() with invalid parameters (input, text_format).
"""
from pydantic import BaseModel
class TestResponse(BaseModel):
"""Test response model."""
answer: str
confidence: float
llm = LLM(model="openai/gpt-4o", stream=True)
with patch.object(llm.client.chat.completions, "create") as mock_create:
mock_chunk1 = MagicMock()
mock_chunk1.choices = [
MagicMock(delta=MagicMock(content='{"answer": "test", ', tool_calls=None))
]
mock_chunk2 = MagicMock()
mock_chunk2.choices = [
MagicMock(
delta=MagicMock(content='"confidence": 0.95}', tool_calls=None)
)
]
mock_create.return_value = iter([mock_chunk1, mock_chunk2])
result = llm.call("Test question", response_model=TestResponse)
assert result is not None
assert isinstance(result, str)
assert mock_create.called
call_kwargs = mock_create.call_args[1]
assert call_kwargs["model"] == "gpt-4o"
assert call_kwargs["stream"] is True
assert "input" not in call_kwargs
assert "text_format" not in call_kwargs