mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 23:58:34 +00:00
* docs: add pt-br translations Powered by a CrewAI Flow https://github.com/danielfsbarreto/docs_translator * Update mcp/overview.mdx brazilian docs Its en-US counterpart was updated after I did a pass, so now it includes the new section about @CrewBase
362 lines
11 KiB
Plaintext
362 lines
11 KiB
Plaintext
---
|
|
title: Colaboração
|
|
description: Como permitir que agentes trabalhem juntos, deleguem tarefas e se comuniquem de forma eficaz em equipes CrewAI.
|
|
icon: screen-users
|
|
---
|
|
|
|
## Visão Geral
|
|
|
|
A colaboração no CrewAI permite que agentes trabalhem juntos como uma equipe, delegando tarefas e fazendo perguntas para aproveitar a expertise uns dos outros. Quando `allow_delegation=True`, os agentes automaticamente têm acesso a poderosas ferramentas de colaboração.
|
|
|
|
## Guia Rápido: Habilite a Colaboração
|
|
|
|
```python
|
|
from crewai import Agent, Crew, Task
|
|
|
|
# Enable collaboration for agents
|
|
researcher = Agent(
|
|
role="Research Specialist",
|
|
goal="Conduct thorough research on any topic",
|
|
backstory="Expert researcher with access to various sources",
|
|
allow_delegation=True, # 🔑 Key setting for collaboration
|
|
verbose=True
|
|
)
|
|
|
|
writer = Agent(
|
|
role="Content Writer",
|
|
goal="Create engaging content based on research",
|
|
backstory="Skilled writer who transforms research into compelling content",
|
|
allow_delegation=True, # 🔑 Enables asking questions to other agents
|
|
verbose=True
|
|
)
|
|
|
|
# Agents can now collaborate automatically
|
|
crew = Crew(
|
|
agents=[researcher, writer],
|
|
tasks=[...],
|
|
verbose=True
|
|
)
|
|
```
|
|
|
|
## Como Funciona a Colaboração entre Agentes
|
|
|
|
Quando `allow_delegation=True`, o CrewAI automaticamente fornece aos agentes duas ferramentas poderosas:
|
|
|
|
### 1. **Ferramenta de Delegação de Trabalho**
|
|
Permite que agentes designem tarefas para colegas com expertise específica.
|
|
|
|
```python
|
|
# Agent automatically gets this tool:
|
|
# Delegate work to coworker(task: str, context: str, coworker: str)
|
|
```
|
|
|
|
### 2. **Ferramenta de Fazer Pergunta**
|
|
Permite que agentes façam perguntas específicas para obter informações de colegas.
|
|
|
|
```python
|
|
# Agent automatically gets this tool:
|
|
# Ask question to coworker(question: str, context: str, coworker: str)
|
|
```
|
|
|
|
## Colaboração em Ação
|
|
|
|
Veja um exemplo completo onde agentes colaboram em uma tarefa de criação de conteúdo:
|
|
|
|
```python
|
|
from crewai import Agent, Crew, Task, Process
|
|
|
|
# Create collaborative agents
|
|
researcher = Agent(
|
|
role="Research Specialist",
|
|
goal="Find accurate, up-to-date information on any topic",
|
|
backstory="""You're a meticulous researcher with expertise in finding
|
|
reliable sources and fact-checking information across various domains.""",
|
|
allow_delegation=True,
|
|
verbose=True
|
|
)
|
|
|
|
writer = Agent(
|
|
role="Content Writer",
|
|
goal="Create engaging, well-structured content",
|
|
backstory="""You're a skilled content writer who excels at transforming
|
|
research into compelling, readable content for different audiences.""",
|
|
allow_delegation=True,
|
|
verbose=True
|
|
)
|
|
|
|
editor = Agent(
|
|
role="Content Editor",
|
|
goal="Ensure content quality and consistency",
|
|
backstory="""You're an experienced editor with an eye for detail,
|
|
ensuring content meets high standards for clarity and accuracy.""",
|
|
allow_delegation=True,
|
|
verbose=True
|
|
)
|
|
|
|
# Create a task that encourages collaboration
|
|
article_task = Task(
|
|
description="""Write a comprehensive 1000-word article about 'The Future of AI in Healthcare'.
|
|
|
|
The article should include:
|
|
- Current AI applications in healthcare
|
|
- Emerging trends and technologies
|
|
- Potential challenges and ethical considerations
|
|
- Expert predictions for the next 5 years
|
|
|
|
Collaborate with your teammates to ensure accuracy and quality.""",
|
|
expected_output="A well-researched, engaging 1000-word article with proper structure and citations",
|
|
agent=writer # Writer leads, but can delegate research to researcher
|
|
)
|
|
|
|
# Create collaborative crew
|
|
crew = Crew(
|
|
agents=[researcher, writer, editor],
|
|
tasks=[article_task],
|
|
process=Process.sequential,
|
|
verbose=True
|
|
)
|
|
|
|
result = crew.kickoff()
|
|
```
|
|
|
|
## Padrões de Colaboração
|
|
|
|
### Padrão 1: Pesquisa → Redação → Edição
|
|
```python
|
|
research_task = Task(
|
|
description="Research the latest developments in quantum computing",
|
|
expected_output="Comprehensive research summary with key findings and sources",
|
|
agent=researcher
|
|
)
|
|
|
|
writing_task = Task(
|
|
description="Write an article based on the research findings",
|
|
expected_output="Engaging 800-word article about quantum computing",
|
|
agent=writer,
|
|
context=[research_task] # Gets research output as context
|
|
)
|
|
|
|
editing_task = Task(
|
|
description="Edit and polish the article for publication",
|
|
expected_output="Publication-ready article with improved clarity and flow",
|
|
agent=editor,
|
|
context=[writing_task] # Gets article draft as context
|
|
)
|
|
```
|
|
|
|
### Padrão 2: Tarefa Única Colaborativa
|
|
```python
|
|
collaborative_task = Task(
|
|
description="""Create a marketing strategy for a new AI product.
|
|
|
|
Writer: Focus on messaging and content strategy
|
|
Researcher: Provide market analysis and competitor insights
|
|
|
|
Work together to create a comprehensive strategy.""",
|
|
expected_output="Complete marketing strategy with research backing",
|
|
agent=writer # Lead agent, but can delegate to researcher
|
|
)
|
|
```
|
|
|
|
## Colaboração Hierárquica
|
|
|
|
Para projetos complexos, utilize um processo hierárquico com um agente gerente:
|
|
|
|
```python
|
|
from crewai import Agent, Crew, Task, Process
|
|
|
|
# Manager agent coordinates the team
|
|
manager = Agent(
|
|
role="Project Manager",
|
|
goal="Coordinate team efforts and ensure project success",
|
|
backstory="Experienced project manager skilled at delegation and quality control",
|
|
allow_delegation=True,
|
|
verbose=True
|
|
)
|
|
|
|
# Specialist agents
|
|
researcher = Agent(
|
|
role="Researcher",
|
|
goal="Provide accurate research and analysis",
|
|
backstory="Expert researcher with deep analytical skills",
|
|
allow_delegation=False, # Specialists focus on their expertise
|
|
verbose=True
|
|
)
|
|
|
|
writer = Agent(
|
|
role="Writer",
|
|
goal="Create compelling content",
|
|
backstory="Skilled writer who creates engaging content",
|
|
allow_delegation=False,
|
|
verbose=True
|
|
)
|
|
|
|
# Manager-led task
|
|
project_task = Task(
|
|
description="Create a comprehensive market analysis report with recommendations",
|
|
expected_output="Executive summary, detailed analysis, and strategic recommendations",
|
|
agent=manager # Manager will delegate to specialists
|
|
)
|
|
|
|
# Hierarchical crew
|
|
crew = Crew(
|
|
agents=[manager, researcher, writer],
|
|
tasks=[project_task],
|
|
process=Process.hierarchical, # Manager coordinates everything
|
|
manager_llm="gpt-4o", # Specify LLM for manager
|
|
verbose=True
|
|
)
|
|
```
|
|
|
|
## Melhores Práticas para Colaboração
|
|
|
|
### 1. **Definição Clara de Papéis**
|
|
```python
|
|
# ✅ Bom: papéis específicos e complementares
|
|
researcher = Agent(role="Market Research Analyst", ...)
|
|
writer = Agent(role="Technical Content Writer", ...)
|
|
|
|
# ❌ Evite: Papéis sobrepostos ou vagos
|
|
agent1 = Agent(role="General Assistant", ...)
|
|
agent2 = Agent(role="Helper", ...)
|
|
```
|
|
|
|
### 2. **Delegação Estratégica Habilitada**
|
|
```python
|
|
# ✅ Habilite delegação para coordenadores e generalistas
|
|
lead_agent = Agent(
|
|
role="Content Lead",
|
|
allow_delegation=True, # Can delegate to specialists
|
|
...
|
|
)
|
|
|
|
# ✅ Desative para especialistas focados (opcional)
|
|
specialist_agent = Agent(
|
|
role="Data Analyst",
|
|
allow_delegation=False, # Focuses on core expertise
|
|
...
|
|
)
|
|
```
|
|
|
|
### 3. **Compartilhamento de Contexto**
|
|
```python
|
|
# ✅ Use o parâmetro context para dependências entre tarefas
|
|
writing_task = Task(
|
|
description="Write article based on research",
|
|
agent=writer,
|
|
context=[research_task], # Shares research results
|
|
...
|
|
)
|
|
```
|
|
|
|
### 4. **Descrições Claras de Tarefas**
|
|
```python
|
|
# ✅ Descrições específicas e acionáveis
|
|
Task(
|
|
description="""Research competitors in the AI chatbot space.
|
|
Focus on: pricing models, key features, target markets.
|
|
Provide data in a structured format.""",
|
|
...
|
|
)
|
|
|
|
# ❌ Descrições vagas que não orientam a colaboração
|
|
Task(description="Do some research about chatbots", ...)
|
|
```
|
|
|
|
## Solução de Problemas em Colaboração
|
|
|
|
### Problema: Agentes Não Colaboram
|
|
**Sintomas:** Agentes trabalham isoladamente, sem ocorrer delegação
|
|
```python
|
|
# ✅ Solução: Certifique-se que a delegação está habilitada
|
|
agent = Agent(
|
|
role="...",
|
|
allow_delegation=True, # This is required!
|
|
...
|
|
)
|
|
```
|
|
|
|
### Problema: Troca Excessiva de Perguntas
|
|
**Sintomas:** Agentes fazem perguntas em excesso, progresso lento
|
|
```python
|
|
# ✅ Solução: Forneça melhor contexto e papéis específicos
|
|
Task(
|
|
description="""Write a technical blog post about machine learning.
|
|
|
|
Context: Target audience is software developers with basic ML knowledge.
|
|
Length: 1200 words
|
|
Include: code examples, practical applications, best practices
|
|
|
|
If you need specific technical details, delegate research to the researcher.""",
|
|
...
|
|
)
|
|
```
|
|
|
|
### Problema: Loops de Delegação
|
|
**Sintomas:** Agentes delegam tarefas repetidamente uns para os outros indefinidamente
|
|
```python
|
|
# ✅ Solução: Hierarquia e responsabilidades bem definidas
|
|
manager = Agent(role="Manager", allow_delegation=True)
|
|
specialist1 = Agent(role="Specialist A", allow_delegation=False) # No re-delegation
|
|
specialist2 = Agent(role="Specialist B", allow_delegation=False)
|
|
```
|
|
|
|
## Recursos Avançados de Colaboração
|
|
|
|
### Regras Personalizadas de Colaboração
|
|
```python
|
|
# Set specific collaboration guidelines in agent backstory
|
|
agent = Agent(
|
|
role="Senior Developer",
|
|
backstory="""You lead development projects and coordinate with team members.
|
|
|
|
Collaboration guidelines:
|
|
- Delegate research tasks to the Research Analyst
|
|
- Ask the Designer for UI/UX guidance
|
|
- Consult the QA Engineer for testing strategies
|
|
- Only escalate blocking issues to the Project Manager""",
|
|
allow_delegation=True
|
|
)
|
|
```
|
|
|
|
### Monitoramento da Colaboração
|
|
```python
|
|
def track_collaboration(output):
|
|
"""Track collaboration patterns"""
|
|
if "Delegate work to coworker" in output.raw:
|
|
print("🤝 Delegation occurred")
|
|
if "Ask question to coworker" in output.raw:
|
|
print("❓ Question asked")
|
|
|
|
crew = Crew(
|
|
agents=[...],
|
|
tasks=[...],
|
|
step_callback=track_collaboration, # Monitor collaboration
|
|
verbose=True
|
|
)
|
|
```
|
|
|
|
## Memória e Aprendizado
|
|
|
|
Permita que agentes se lembrem de colaborações passadas:
|
|
|
|
```python
|
|
agent = Agent(
|
|
role="Content Lead",
|
|
memory=True, # Remembers past interactions
|
|
allow_delegation=True,
|
|
verbose=True
|
|
)
|
|
```
|
|
|
|
Com a memória ativada, os agentes aprendem com colaborações anteriores e aprimoram suas decisões de delegação ao longo do tempo.
|
|
|
|
## Próximos Passos
|
|
|
|
- **Teste os exemplos**: Comece pelo exemplo básico de colaboração
|
|
- **Experimente diferentes papéis**: Teste combinações variadas de papéis de agentes
|
|
- **Monitore as interações**: Use `verbose=True` para ver a colaboração em ação
|
|
- **Otimize descrições de tarefas**: Tarefas claras geram melhor colaboração
|
|
- **Escale**: Experimente processos hierárquicos para projetos complexos
|
|
|
|
A colaboração transforma agentes de IA individuais em equipes poderosas capazes de enfrentar desafios complexos e multifacetados juntos. |