Files
crewAI/crewai/agent.py
Greyson Lalonde 73716f35fc Run pre-commit hooks
In the title !
2023-12-27 15:13:42 -05:00

121 lines
4.3 KiB
Python

"""Generic agent."""
from typing import Any, List, Optional
from langchain.agents import AgentExecutor
from langchain.agents.format_scratchpad import format_log_to_str
from langchain.agents.output_parsers import ReActSingleInputOutputParser
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationSummaryMemory
from langchain.tools.render import render_text_description
from pydantic.v1 import BaseModel, Field, PrivateAttr, root_validator
from .prompts import Prompts
class Agent(BaseModel):
"""
Represents an agent in a system.
Each agent has a role, a goal, a backstory, and an optional language model (llm).
The agent can also have memory, can operate in verbose mode, and can delegate tasks to other agents.
Attributes:
agent_executor: An instance of the AgentExecutor class.
role: The role of the agent.
goal: The objective of the agent.
backstory: The backstory of the agent.
llm: The language model that will run the agent.
memory: Whether the agent should have memory or not.
verbose: Whether the agent execution should be in verbose mode.
allow_delegation: Whether the agent is allowed to delegate tasks to other agents.
"""
agent_executor: AgentExecutor = None
role: str = Field(description="Role of the agent")
goal: str = Field(description="Objective of the agent")
backstory: str = Field(description="Backstory of the agent")
llm: Optional[Any] = Field(description="LLM that will run the agent")
memory: bool = Field(
description="Whether the agent should have memory or not", default=True
)
verbose: bool = Field(
description="Verbose mode for the Agent Execution", default=False
)
allow_delegation: bool = Field(
description="Allow delegation of tasks to agents", default=True
)
tools: List[Any] = Field(description="Tools at agents disposal", default=[])
_task_calls: List[Any] = PrivateAttr()
@root_validator(pre=True)
def check_llm(_cls, values):
if not values.get("llm"):
values["llm"] = ChatOpenAI(temperature=0.7, model_name="gpt-4")
return values
def __init__(self, **data):
super().__init__(**data)
agent_args = {
"input": lambda x: x["input"],
"tools": lambda x: x["tools"],
"tool_names": lambda x: x["tool_names"],
"agent_scratchpad": lambda x: format_log_to_str(x["intermediate_steps"]),
}
executor_args = {
"tools": self.tools,
"verbose": self.verbose,
"handle_parsing_errors": True,
}
if self.memory:
summary_memory = ConversationSummaryMemory(
llm=self.llm, memory_key="chat_history", input_key="input"
)
executor_args["memory"] = summary_memory
agent_args["chat_history"] = lambda x: x["chat_history"]
prompt = Prompts.TASK_EXECUTION_WITH_MEMORY_PROMPT
else:
prompt = Prompts.TASK_EXECUTION_PROMPT
execution_prompt = prompt.partial(
goal=self.goal,
role=self.role,
backstory=self.backstory,
)
bind = self.llm.bind(stop=["\nObservation"])
inner_agent = (
agent_args | execution_prompt | bind | ReActSingleInputOutputParser()
)
self.agent_executor = AgentExecutor(agent=inner_agent, **executor_args)
def execute_task(
self, task: str, context: str = None, tools: List[Any] = None
) -> str:
"""
Execute a task with the agent.
Parameters:
task (str): Task to execute
Returns:
output (str): Output of the agent
"""
if context:
task = "\n".join(
[task, "\nThis is the context you are working with:", context]
)
tools = tools or self.tools
self.agent_executor.tools = tools
return self.agent_executor.invoke(
{
"input": task,
"tool_names": self.__tools_names(tools),
"tools": render_text_description(tools),
}
)["output"]
def __tools_names(self, tools) -> str:
return ", ".join([t.name for t in tools])