mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-24 07:38:14 +00:00
- Add full OpenAI Responses API support alongside existing Chat Completions API - Implement auto_chain parameter to automatically track and pass previous_response_id - Add auto_chain_reasoning for encrypted reasoning in ZDR (Zero Data Retention) scenarios - Parse built-in tool outputs: web_search, file_search, computer_use, code_interpreter - Support all Responses API parameters: reasoning, include, tools, truncation, etc. - Add streaming support for Responses API with proper event handling - Include 67 tests covering all new functionality
1395 lines
44 KiB
Python
1395 lines
44 KiB
Python
import os
|
|
import sys
|
|
import types
|
|
from unittest.mock import patch, MagicMock
|
|
import openai
|
|
import pytest
|
|
|
|
from crewai.llm import LLM
|
|
from crewai.llms.providers.openai.completion import OpenAICompletion, ResponsesAPIResult
|
|
from crewai.crew import Crew
|
|
from crewai.agent import Agent
|
|
from crewai.task import Task
|
|
from crewai.cli.constants import DEFAULT_LLM_MODEL
|
|
|
|
def test_openai_completion_is_used_when_openai_provider():
|
|
"""
|
|
Test that OpenAICompletion from completion.py is used when LLM uses provider 'openai'
|
|
"""
|
|
llm = LLM(model="gpt-4o")
|
|
|
|
assert llm.__class__.__name__ == "OpenAICompletion"
|
|
assert llm.provider == "openai"
|
|
assert llm.model == "gpt-4o"
|
|
|
|
|
|
def test_openai_completion_is_used_when_no_provider_prefix():
|
|
"""
|
|
Test that OpenAICompletion is used when no provider prefix is given (defaults to openai)
|
|
"""
|
|
llm = LLM(model="gpt-4o")
|
|
|
|
from crewai.llms.providers.openai.completion import OpenAICompletion
|
|
assert isinstance(llm, OpenAICompletion)
|
|
assert llm.provider == "openai"
|
|
assert llm.model == "gpt-4o"
|
|
|
|
@pytest.mark.vcr()
|
|
def test_openai_is_default_provider_without_explicit_llm_set_on_agent():
|
|
"""
|
|
Test that OpenAI is the default provider when no explicit LLM is set on the agent
|
|
"""
|
|
agent = Agent(
|
|
role="Research Assistant",
|
|
goal="Find information about the population of Tokyo",
|
|
backstory="You are a helpful research assistant.",
|
|
llm=LLM(model="gpt-4o-mini"),
|
|
)
|
|
task = Task(
|
|
description="Find information about the population of Tokyo",
|
|
expected_output="The population of Tokyo is 10 million",
|
|
agent=agent,
|
|
)
|
|
crew = Crew(agents=[agent], tasks=[task])
|
|
crew.kickoff()
|
|
assert crew.agents[0].llm.__class__.__name__ == "OpenAICompletion"
|
|
assert crew.agents[0].llm.model == "gpt-4o-mini"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_openai_completion_module_is_imported():
|
|
"""
|
|
Test that the completion module is properly imported when using OpenAI provider
|
|
"""
|
|
module_name = "crewai.llms.providers.openai.completion"
|
|
|
|
# Remove module from cache if it exists
|
|
if module_name in sys.modules:
|
|
del sys.modules[module_name]
|
|
|
|
# Create LLM instance - this should trigger the import
|
|
LLM(model="gpt-4o")
|
|
|
|
# Verify the module was imported
|
|
assert module_name in sys.modules
|
|
completion_mod = sys.modules[module_name]
|
|
assert isinstance(completion_mod, types.ModuleType)
|
|
|
|
# Verify the class exists in the module
|
|
assert hasattr(completion_mod, 'OpenAICompletion')
|
|
|
|
|
|
def test_native_openai_raises_error_when_initialization_fails():
|
|
"""
|
|
Test that LLM raises ImportError when native OpenAI completion fails to initialize.
|
|
This ensures we don't silently fall back when there's a configuration issue.
|
|
"""
|
|
# Mock the _get_native_provider to return a failing class
|
|
with patch('crewai.llm.LLM._get_native_provider') as mock_get_provider:
|
|
|
|
class FailingCompletion:
|
|
def __init__(self, *args, **kwargs):
|
|
raise Exception("Native SDK failed")
|
|
|
|
mock_get_provider.return_value = FailingCompletion
|
|
|
|
# This should raise ImportError, not fall back to LiteLLM
|
|
with pytest.raises(ImportError) as excinfo:
|
|
LLM(model="gpt-4o")
|
|
|
|
assert "Error importing native provider" in str(excinfo.value)
|
|
assert "Native SDK failed" in str(excinfo.value)
|
|
|
|
|
|
def test_openai_completion_initialization_parameters():
|
|
"""
|
|
Test that OpenAICompletion is initialized with correct parameters
|
|
"""
|
|
llm = LLM(
|
|
model="gpt-4o",
|
|
temperature=0.7,
|
|
max_tokens=1000,
|
|
api_key="test-key"
|
|
)
|
|
|
|
from crewai.llms.providers.openai.completion import OpenAICompletion
|
|
assert isinstance(llm, OpenAICompletion)
|
|
assert llm.model == "gpt-4o"
|
|
assert llm.temperature == 0.7
|
|
assert llm.max_tokens == 1000
|
|
|
|
def test_openai_completion_call():
|
|
"""
|
|
Test that OpenAICompletion call method works
|
|
"""
|
|
llm = LLM(model="openai/gpt-4o")
|
|
|
|
# Mock the call method on the instance
|
|
with patch.object(llm, 'call', return_value="Hello! I'm ready to help.") as mock_call:
|
|
result = llm.call("Hello, how are you?")
|
|
|
|
assert result == "Hello! I'm ready to help."
|
|
mock_call.assert_called_once_with("Hello, how are you?")
|
|
|
|
|
|
def test_openai_completion_called_during_crew_execution():
|
|
"""
|
|
Test that OpenAICompletion.call is actually invoked when running a crew
|
|
"""
|
|
# Create the LLM instance first
|
|
openai_llm = LLM(model="openai/gpt-4o")
|
|
|
|
# Mock the call method on the specific instance
|
|
with patch.object(openai_llm, 'call', return_value="Tokyo has 14 million people.") as mock_call:
|
|
|
|
# Create agent with explicit LLM configuration
|
|
agent = Agent(
|
|
role="Research Assistant",
|
|
goal="Find population info",
|
|
backstory="You research populations.",
|
|
llm=openai_llm,
|
|
)
|
|
|
|
task = Task(
|
|
description="Find Tokyo population",
|
|
expected_output="Population number",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(agents=[agent], tasks=[task])
|
|
result = crew.kickoff()
|
|
|
|
# Verify mock was called
|
|
assert mock_call.called
|
|
assert "14 million" in str(result)
|
|
|
|
|
|
def test_openai_completion_call_arguments():
|
|
"""
|
|
Test that OpenAICompletion.call is invoked with correct arguments
|
|
"""
|
|
# Create LLM instance first (like working tests)
|
|
openai_llm = LLM(model="openai/gpt-4o")
|
|
|
|
# Mock the instance method (like working tests)
|
|
with patch.object(openai_llm, 'call') as mock_call:
|
|
mock_call.return_value = "Task completed successfully."
|
|
|
|
agent = Agent(
|
|
role="Test Agent",
|
|
goal="Complete a simple task",
|
|
backstory="You are a test agent.",
|
|
llm=openai_llm # Use same instance
|
|
)
|
|
|
|
task = Task(
|
|
description="Say hello world",
|
|
expected_output="Hello world",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(agents=[agent], tasks=[task])
|
|
crew.kickoff()
|
|
|
|
# Verify call was made
|
|
assert mock_call.called
|
|
|
|
# Check the arguments passed to the call method
|
|
call_args = mock_call.call_args
|
|
assert call_args is not None
|
|
|
|
# The first argument should be the messages
|
|
messages = call_args[0][0] # First positional argument
|
|
assert isinstance(messages, (str, list))
|
|
|
|
# Verify that the task description appears in the messages
|
|
if isinstance(messages, str):
|
|
assert "hello world" in messages.lower()
|
|
elif isinstance(messages, list):
|
|
message_content = str(messages).lower()
|
|
assert "hello world" in message_content
|
|
|
|
|
|
def test_multiple_openai_calls_in_crew():
|
|
"""
|
|
Test that OpenAICompletion.call is invoked multiple times for multiple tasks
|
|
"""
|
|
# Create LLM instance first
|
|
openai_llm = LLM(model="openai/gpt-4o")
|
|
|
|
# Mock the instance method
|
|
with patch.object(openai_llm, 'call') as mock_call:
|
|
mock_call.return_value = "Task completed."
|
|
|
|
agent = Agent(
|
|
role="Multi-task Agent",
|
|
goal="Complete multiple tasks",
|
|
backstory="You can handle multiple tasks.",
|
|
llm=openai_llm # Use same instance
|
|
)
|
|
|
|
task1 = Task(
|
|
description="First task",
|
|
expected_output="First result",
|
|
agent=agent,
|
|
)
|
|
|
|
task2 = Task(
|
|
description="Second task",
|
|
expected_output="Second result",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(
|
|
agents=[agent],
|
|
tasks=[task1, task2]
|
|
)
|
|
crew.kickoff()
|
|
|
|
# Verify multiple calls were made
|
|
assert mock_call.call_count >= 2 # At least one call per task
|
|
|
|
# Verify each call had proper arguments
|
|
for call in mock_call.call_args_list:
|
|
assert len(call[0]) > 0 # Has positional arguments
|
|
messages = call[0][0]
|
|
assert messages is not None
|
|
|
|
|
|
def test_openai_completion_with_tools():
|
|
"""
|
|
Test that OpenAICompletion.call is invoked with tools when agent has tools
|
|
"""
|
|
from crewai.tools import tool
|
|
|
|
@tool
|
|
def sample_tool(query: str) -> str:
|
|
"""A sample tool for testing"""
|
|
return f"Tool result for: {query}"
|
|
|
|
# Create LLM instance first
|
|
openai_llm = LLM(model="openai/gpt-4o")
|
|
|
|
# Mock the instance method (not the class method)
|
|
with patch.object(openai_llm, 'call') as mock_call:
|
|
mock_call.return_value = "Task completed with tools."
|
|
|
|
agent = Agent(
|
|
role="Tool User",
|
|
goal="Use tools to complete tasks",
|
|
backstory="You can use tools.",
|
|
llm=openai_llm, # Use same instance
|
|
tools=[sample_tool]
|
|
)
|
|
|
|
task = Task(
|
|
description="Use the sample tool",
|
|
expected_output="Tool usage result",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(agents=[agent], tasks=[task])
|
|
crew.kickoff()
|
|
|
|
assert mock_call.called
|
|
|
|
call_args = mock_call.call_args
|
|
call_kwargs = call_args[1] if len(call_args) > 1 else {}
|
|
|
|
if 'tools' in call_kwargs:
|
|
assert call_kwargs['tools'] is not None
|
|
assert len(call_kwargs['tools']) > 0
|
|
|
|
@pytest.mark.vcr()
|
|
def test_openai_completion_call_returns_usage_metrics():
|
|
"""
|
|
Test that OpenAICompletion.call returns usage metrics
|
|
"""
|
|
agent = Agent(
|
|
role="Research Assistant",
|
|
goal="Find information about the population of Tokyo",
|
|
backstory="You are a helpful research assistant.",
|
|
llm=LLM(model="gpt-4o"),
|
|
verbose=True,
|
|
)
|
|
|
|
task = Task(
|
|
description="Find information about the population of Tokyo",
|
|
expected_output="The population of Tokyo is 10 million",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(agents=[agent], tasks=[task])
|
|
result = crew.kickoff()
|
|
assert result.token_usage is not None
|
|
assert result.token_usage.total_tokens == 289
|
|
assert result.token_usage.prompt_tokens == 173
|
|
assert result.token_usage.completion_tokens == 116
|
|
assert result.token_usage.successful_requests == 1
|
|
assert result.token_usage.cached_prompt_tokens == 0
|
|
|
|
|
|
@pytest.mark.skip(reason="Allow for litellm")
|
|
def test_openai_raises_error_when_model_not_supported():
|
|
"""Test that OpenAICompletion raises ValueError when model not supported"""
|
|
|
|
with patch('crewai.llms.providers.openai.completion.OpenAI') as mock_openai_class:
|
|
mock_client = MagicMock()
|
|
mock_openai_class.return_value = mock_client
|
|
|
|
mock_client.chat.completions.create.side_effect = openai.NotFoundError(
|
|
message="The model `model-doesnt-exist` does not exist",
|
|
response=MagicMock(),
|
|
body={}
|
|
)
|
|
|
|
llm = LLM(model="openai/model-doesnt-exist")
|
|
|
|
with pytest.raises(ValueError, match="Model.*not found"):
|
|
llm.call("Hello")
|
|
|
|
def test_openai_client_setup_with_extra_arguments():
|
|
"""
|
|
Test that OpenAICompletion is initialized with correct parameters
|
|
"""
|
|
llm = LLM(
|
|
model="gpt-4o",
|
|
temperature=0.7,
|
|
max_tokens=1000,
|
|
top_p=0.5,
|
|
max_retries=3,
|
|
timeout=30
|
|
)
|
|
|
|
# Check that model parameters are stored on the LLM instance
|
|
assert llm.temperature == 0.7
|
|
assert llm.max_tokens == 1000
|
|
assert llm.top_p == 0.5
|
|
|
|
# Check that client parameters are properly configured
|
|
assert llm.client.max_retries == 3
|
|
assert llm.client.timeout == 30
|
|
|
|
# Test that parameters are properly used in API calls
|
|
with patch.object(llm.client.chat.completions, 'create') as mock_create:
|
|
mock_create.return_value = MagicMock(
|
|
choices=[MagicMock(message=MagicMock(content="test response", tool_calls=None))],
|
|
usage=MagicMock(prompt_tokens=10, completion_tokens=20, total_tokens=30)
|
|
)
|
|
|
|
llm.call("Hello")
|
|
|
|
# Verify the API was called with the right parameters
|
|
call_args = mock_create.call_args[1] # keyword arguments
|
|
assert call_args['temperature'] == 0.7
|
|
assert call_args['max_tokens'] == 1000
|
|
assert call_args['top_p'] == 0.5
|
|
assert call_args['model'] == 'gpt-4o'
|
|
|
|
def test_extra_arguments_are_passed_to_openai_completion():
|
|
"""
|
|
Test that extra arguments are passed to OpenAICompletion
|
|
"""
|
|
llm = LLM(model="gpt-4o", temperature=0.7, max_tokens=1000, top_p=0.5, max_retries=3)
|
|
|
|
with patch.object(llm.client.chat.completions, 'create') as mock_create:
|
|
mock_create.return_value = MagicMock(
|
|
choices=[MagicMock(message=MagicMock(content="test response", tool_calls=None))],
|
|
usage=MagicMock(prompt_tokens=10, completion_tokens=20, total_tokens=30)
|
|
)
|
|
|
|
llm.call("Hello, how are you?")
|
|
|
|
assert mock_create.called
|
|
call_kwargs = mock_create.call_args[1]
|
|
|
|
assert call_kwargs['temperature'] == 0.7
|
|
assert call_kwargs['max_tokens'] == 1000
|
|
assert call_kwargs['top_p'] == 0.5
|
|
assert call_kwargs['model'] == 'gpt-4o'
|
|
|
|
|
|
|
|
def test_openai_get_client_params_with_api_base():
|
|
"""
|
|
Test that _get_client_params correctly converts api_base to base_url
|
|
"""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api_base="https://custom.openai.com/v1",
|
|
)
|
|
client_params = llm._get_client_params()
|
|
assert client_params["base_url"] == "https://custom.openai.com/v1"
|
|
|
|
def test_openai_get_client_params_with_base_url_priority():
|
|
"""
|
|
Test that base_url takes priority over api_base in _get_client_params
|
|
"""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
base_url="https://priority.openai.com/v1",
|
|
api_base="https://fallback.openai.com/v1",
|
|
)
|
|
client_params = llm._get_client_params()
|
|
assert client_params["base_url"] == "https://priority.openai.com/v1"
|
|
|
|
def test_openai_get_client_params_with_env_var():
|
|
"""
|
|
Test that _get_client_params uses OPENAI_BASE_URL environment variable as fallback
|
|
"""
|
|
with patch.dict(os.environ, {
|
|
"OPENAI_BASE_URL": "https://env.openai.com/v1",
|
|
}):
|
|
llm = OpenAICompletion(model="gpt-4o")
|
|
client_params = llm._get_client_params()
|
|
assert client_params["base_url"] == "https://env.openai.com/v1"
|
|
|
|
def test_openai_get_client_params_priority_order():
|
|
"""
|
|
Test the priority order: base_url > api_base > OPENAI_BASE_URL env var
|
|
"""
|
|
with patch.dict(os.environ, {
|
|
"OPENAI_BASE_URL": "https://env.openai.com/v1",
|
|
}):
|
|
# Test base_url beats api_base and env var
|
|
llm1 = OpenAICompletion(
|
|
model="gpt-4o",
|
|
base_url="https://base-url.openai.com/v1",
|
|
api_base="https://api-base.openai.com/v1",
|
|
)
|
|
params1 = llm1._get_client_params()
|
|
assert params1["base_url"] == "https://base-url.openai.com/v1"
|
|
|
|
# Test api_base beats env var when base_url is None
|
|
llm2 = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api_base="https://api-base.openai.com/v1",
|
|
)
|
|
params2 = llm2._get_client_params()
|
|
assert params2["base_url"] == "https://api-base.openai.com/v1"
|
|
|
|
# Test env var is used when both base_url and api_base are None
|
|
llm3 = OpenAICompletion(model="gpt-4o")
|
|
params3 = llm3._get_client_params()
|
|
assert params3["base_url"] == "https://env.openai.com/v1"
|
|
|
|
def test_openai_get_client_params_no_base_url(monkeypatch):
|
|
"""
|
|
Test that _get_client_params works correctly when no base_url is specified
|
|
"""
|
|
# Clear env vars that could set base_url
|
|
monkeypatch.delenv("OPENAI_BASE_URL", raising=False)
|
|
monkeypatch.delenv("OPENAI_API_BASE", raising=False)
|
|
|
|
llm = OpenAICompletion(model="gpt-4o")
|
|
client_params = llm._get_client_params()
|
|
# When no base_url is provided, it should not be in the params (filtered out as None)
|
|
assert "base_url" not in client_params or client_params.get("base_url") is None
|
|
|
|
|
|
def test_openai_streaming_with_response_model():
|
|
"""
|
|
Test that streaming with response_model works correctly and doesn't call invalid API methods.
|
|
This test verifies the fix for the bug where streaming with response_model attempted to call
|
|
self.client.responses.stream() with invalid parameters (input, text_format).
|
|
"""
|
|
from pydantic import BaseModel
|
|
|
|
class TestResponse(BaseModel):
|
|
"""Test response model."""
|
|
|
|
answer: str
|
|
confidence: float
|
|
|
|
llm = LLM(model="openai/gpt-4o", stream=True)
|
|
|
|
with patch.object(llm.client.beta.chat.completions, "stream") as mock_stream:
|
|
# Create mock chunks with content.delta event structure
|
|
mock_chunk1 = MagicMock()
|
|
mock_chunk1.type = "content.delta"
|
|
mock_chunk1.delta = '{"answer": "test", '
|
|
|
|
mock_chunk2 = MagicMock()
|
|
mock_chunk2.type = "content.delta"
|
|
mock_chunk2.delta = '"confidence": 0.95}'
|
|
|
|
# Create mock final completion with parsed result
|
|
mock_parsed = TestResponse(answer="test", confidence=0.95)
|
|
mock_message = MagicMock()
|
|
mock_message.parsed = mock_parsed
|
|
mock_choice = MagicMock()
|
|
mock_choice.message = mock_message
|
|
mock_final_completion = MagicMock()
|
|
mock_final_completion.choices = [mock_choice]
|
|
|
|
# Create mock stream context manager
|
|
mock_stream_obj = MagicMock()
|
|
mock_stream_obj.__enter__ = MagicMock(return_value=mock_stream_obj)
|
|
mock_stream_obj.__exit__ = MagicMock(return_value=None)
|
|
mock_stream_obj.__iter__ = MagicMock(return_value=iter([mock_chunk1, mock_chunk2]))
|
|
mock_stream_obj.get_final_completion = MagicMock(return_value=mock_final_completion)
|
|
|
|
mock_stream.return_value = mock_stream_obj
|
|
|
|
result = llm.call("Test question", response_model=TestResponse)
|
|
|
|
assert result is not None
|
|
assert isinstance(result, str)
|
|
|
|
assert mock_stream.called
|
|
call_kwargs = mock_stream.call_args[1]
|
|
assert call_kwargs["model"] == "gpt-4o"
|
|
assert call_kwargs["response_format"] == TestResponse
|
|
|
|
assert "input" not in call_kwargs
|
|
assert "text_format" not in call_kwargs
|
|
|
|
|
|
@pytest.mark.vcr()
|
|
def test_openai_response_format_with_pydantic_model():
|
|
"""
|
|
Test that response_format with a Pydantic BaseModel returns structured output.
|
|
"""
|
|
from pydantic import BaseModel, Field
|
|
|
|
class AnswerResponse(BaseModel):
|
|
"""Response model with structured fields."""
|
|
|
|
answer: str = Field(description="The answer to the question")
|
|
confidence: float = Field(description="Confidence score between 0 and 1")
|
|
|
|
llm = LLM(model="gpt-4o", response_format=AnswerResponse)
|
|
result = llm.call("What is the capital of France? Be concise.")
|
|
|
|
assert isinstance(result, AnswerResponse)
|
|
assert result.answer is not None
|
|
assert 0 <= result.confidence <= 1
|
|
|
|
|
|
@pytest.mark.vcr()
|
|
def test_openai_response_format_with_dict():
|
|
"""
|
|
Test that response_format with a dict returns JSON output.
|
|
"""
|
|
import json
|
|
|
|
llm = LLM(model="gpt-4o", response_format={"type": "json_object"})
|
|
result = llm.call("Return a JSON object with a 'status' field set to 'success'")
|
|
|
|
parsed = json.loads(result)
|
|
assert "status" in parsed
|
|
|
|
|
|
@pytest.mark.vcr()
|
|
def test_openai_response_format_none():
|
|
"""
|
|
Test that when response_format is None, the API returns plain text.
|
|
"""
|
|
llm = LLM(model="gpt-4o", response_format=None)
|
|
result = llm.call("Say hello in one word")
|
|
|
|
assert isinstance(result, str)
|
|
assert len(result) > 0
|
|
|
|
|
|
@pytest.mark.vcr()
|
|
def test_openai_streaming_returns_usage_metrics():
|
|
"""
|
|
Test that OpenAI streaming calls return proper token usage metrics.
|
|
"""
|
|
agent = Agent(
|
|
role="Research Assistant",
|
|
goal="Find information about the capital of France",
|
|
backstory="You are a helpful research assistant.",
|
|
llm=LLM(model="gpt-4o-mini", stream=True),
|
|
verbose=True,
|
|
)
|
|
|
|
task = Task(
|
|
description="What is the capital of France?",
|
|
expected_output="The capital of France",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(agents=[agent], tasks=[task])
|
|
result = crew.kickoff()
|
|
|
|
assert result.token_usage is not None
|
|
assert result.token_usage.total_tokens > 0
|
|
assert result.token_usage.prompt_tokens > 0
|
|
assert result.token_usage.completion_tokens > 0
|
|
assert result.token_usage.successful_requests >= 1
|
|
|
|
|
|
def test_openai_responses_api_initialization():
|
|
"""Test that OpenAI Responses API can be initialized with api='responses'."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-5",
|
|
api="responses",
|
|
instructions="You are a helpful assistant.",
|
|
store=True,
|
|
)
|
|
|
|
assert llm.api == "responses"
|
|
assert llm.instructions == "You are a helpful assistant."
|
|
assert llm.store is True
|
|
assert llm.model == "gpt-5"
|
|
|
|
|
|
def test_openai_responses_api_default_is_completions():
|
|
"""Test that the default API is 'completions' for backward compatibility."""
|
|
llm = OpenAICompletion(model="gpt-4o")
|
|
|
|
assert llm.api == "completions"
|
|
|
|
|
|
def test_openai_responses_api_prepare_params():
|
|
"""Test that Responses API params are prepared correctly."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-5",
|
|
api="responses",
|
|
instructions="Base instructions.",
|
|
store=True,
|
|
temperature=0.7,
|
|
)
|
|
|
|
messages = [
|
|
{"role": "system", "content": "System message."},
|
|
{"role": "user", "content": "Hello!"},
|
|
]
|
|
|
|
params = llm._prepare_responses_params(messages)
|
|
|
|
assert params["model"] == "gpt-5"
|
|
assert "Base instructions." in params["instructions"]
|
|
assert "System message." in params["instructions"]
|
|
assert params["store"] is True
|
|
assert params["temperature"] == 0.7
|
|
assert params["input"] == [{"role": "user", "content": "Hello!"}]
|
|
|
|
|
|
def test_openai_responses_api_tool_format():
|
|
"""Test that tools are converted to Responses API format (internally-tagged)."""
|
|
llm = OpenAICompletion(model="gpt-5", api="responses")
|
|
|
|
tools = [
|
|
{
|
|
"name": "get_weather",
|
|
"description": "Get the weather for a location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {"location": {"type": "string"}},
|
|
"required": ["location"],
|
|
},
|
|
}
|
|
]
|
|
|
|
responses_tools = llm._convert_tools_for_responses(tools)
|
|
|
|
assert len(responses_tools) == 1
|
|
tool = responses_tools[0]
|
|
assert tool["type"] == "function"
|
|
assert tool["name"] == "get_weather"
|
|
assert tool["description"] == "Get the weather for a location"
|
|
assert "parameters" in tool
|
|
assert "function" not in tool
|
|
|
|
|
|
def test_openai_completions_api_tool_format():
|
|
"""Test that tools are converted to Chat Completions API format (externally-tagged)."""
|
|
llm = OpenAICompletion(model="gpt-4o", api="completions")
|
|
|
|
tools = [
|
|
{
|
|
"name": "get_weather",
|
|
"description": "Get the weather for a location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {"location": {"type": "string"}},
|
|
"required": ["location"],
|
|
},
|
|
}
|
|
]
|
|
|
|
completions_tools = llm._convert_tools_for_interference(tools)
|
|
|
|
assert len(completions_tools) == 1
|
|
tool = completions_tools[0]
|
|
assert tool["type"] == "function"
|
|
assert "function" in tool
|
|
assert tool["function"]["name"] == "get_weather"
|
|
assert tool["function"]["description"] == "Get the weather for a location"
|
|
|
|
|
|
def test_openai_responses_api_structured_output_format():
|
|
"""Test that structured outputs use text.format for Responses API."""
|
|
from pydantic import BaseModel
|
|
|
|
class Person(BaseModel):
|
|
name: str
|
|
age: int
|
|
|
|
llm = OpenAICompletion(model="gpt-5", api="responses")
|
|
|
|
messages = [{"role": "user", "content": "Extract: Jane, 25"}]
|
|
params = llm._prepare_responses_params(messages, response_model=Person)
|
|
|
|
assert "text" in params
|
|
assert "format" in params["text"]
|
|
assert params["text"]["format"]["type"] == "json_schema"
|
|
assert params["text"]["format"]["name"] == "Person"
|
|
assert params["text"]["format"]["strict"] is True
|
|
|
|
|
|
def test_openai_responses_api_with_previous_response_id():
|
|
"""Test that previous_response_id is passed for multi-turn conversations."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-5",
|
|
api="responses",
|
|
previous_response_id="resp_abc123",
|
|
store=True,
|
|
)
|
|
|
|
messages = [{"role": "user", "content": "Continue our conversation."}]
|
|
params = llm._prepare_responses_params(messages)
|
|
|
|
assert params["previous_response_id"] == "resp_abc123"
|
|
assert params["store"] is True
|
|
|
|
|
|
def test_openai_responses_api_call_routing():
|
|
"""Test that call() routes to the correct API based on the api parameter."""
|
|
from unittest.mock import patch, MagicMock
|
|
|
|
llm_completions = OpenAICompletion(model="gpt-4o", api="completions")
|
|
llm_responses = OpenAICompletion(model="gpt-5", api="responses")
|
|
|
|
with patch.object(
|
|
llm_completions, "_call_completions", return_value="completions result"
|
|
) as mock_completions:
|
|
result = llm_completions.call("Hello")
|
|
mock_completions.assert_called_once()
|
|
assert result == "completions result"
|
|
|
|
with patch.object(
|
|
llm_responses, "_call_responses", return_value="responses result"
|
|
) as mock_responses:
|
|
result = llm_responses.call("Hello")
|
|
mock_responses.assert_called_once()
|
|
assert result == "responses result"
|
|
|
|
|
|
# =============================================================================
|
|
# VCR Integration Tests for Responses API
|
|
# =============================================================================
|
|
|
|
|
|
@pytest.mark.vcr()
|
|
def test_openai_responses_api_basic_call():
|
|
"""Test basic Responses API call with text generation."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o-mini",
|
|
api="responses",
|
|
instructions="You are a helpful assistant. Be concise.",
|
|
)
|
|
|
|
result = llm.call("What is 2 + 2? Answer with just the number.")
|
|
|
|
assert isinstance(result, str)
|
|
assert "4" in result
|
|
|
|
|
|
@pytest.mark.vcr()
|
|
def test_openai_responses_api_with_structured_output():
|
|
"""Test Responses API with structured output using Pydantic model."""
|
|
from pydantic import BaseModel, Field
|
|
|
|
class MathAnswer(BaseModel):
|
|
"""Structured math answer."""
|
|
|
|
result: int = Field(description="The numerical result")
|
|
explanation: str = Field(description="Brief explanation")
|
|
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o-mini",
|
|
api="responses",
|
|
)
|
|
|
|
result = llm.call("What is 5 * 7?", response_model=MathAnswer)
|
|
|
|
assert isinstance(result, MathAnswer)
|
|
assert result.result == 35
|
|
|
|
|
|
@pytest.mark.vcr()
|
|
def test_openai_responses_api_with_system_message_extraction():
|
|
"""Test that system messages are properly extracted to instructions."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o-mini",
|
|
api="responses",
|
|
)
|
|
|
|
messages = [
|
|
{"role": "system", "content": "You always respond in uppercase letters only."},
|
|
{"role": "user", "content": "Say hello"},
|
|
]
|
|
|
|
result = llm.call(messages)
|
|
|
|
assert isinstance(result, str)
|
|
assert result.isupper() or "HELLO" in result.upper()
|
|
|
|
|
|
@pytest.mark.vcr()
|
|
def test_openai_responses_api_streaming():
|
|
"""Test Responses API with streaming enabled."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o-mini",
|
|
api="responses",
|
|
stream=True,
|
|
instructions="Be very concise.",
|
|
)
|
|
|
|
result = llm.call("Count from 1 to 3, separated by commas.")
|
|
|
|
assert isinstance(result, str)
|
|
assert "1" in result
|
|
assert "2" in result
|
|
assert "3" in result
|
|
|
|
|
|
@pytest.mark.vcr()
|
|
def test_openai_responses_api_returns_usage_metrics():
|
|
"""Test that Responses API calls return proper token usage metrics."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o-mini",
|
|
api="responses",
|
|
)
|
|
|
|
llm.call("Say hello")
|
|
|
|
usage = llm.get_token_usage_summary()
|
|
assert usage.total_tokens > 0
|
|
assert usage.prompt_tokens > 0
|
|
assert usage.completion_tokens > 0
|
|
|
|
|
|
def test_openai_responses_api_builtin_tools_param():
|
|
"""Test that builtin_tools parameter is properly configured."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
builtin_tools=["web_search", "code_interpreter"],
|
|
)
|
|
|
|
assert llm.builtin_tools == ["web_search", "code_interpreter"]
|
|
|
|
messages = [{"role": "user", "content": "Test"}]
|
|
params = llm._prepare_responses_params(messages)
|
|
|
|
assert "tools" in params
|
|
tool_types = [t["type"] for t in params["tools"]]
|
|
assert "web_search_preview" in tool_types
|
|
assert "code_interpreter" in tool_types
|
|
|
|
|
|
def test_openai_responses_api_builtin_tools_with_custom_tools():
|
|
"""Test that builtin_tools can be combined with custom function tools."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
builtin_tools=["web_search"],
|
|
)
|
|
|
|
custom_tools = [
|
|
{
|
|
"name": "get_weather",
|
|
"description": "Get weather for a location",
|
|
"parameters": {"type": "object", "properties": {}},
|
|
}
|
|
]
|
|
|
|
messages = [{"role": "user", "content": "Test"}]
|
|
params = llm._prepare_responses_params(messages, tools=custom_tools)
|
|
|
|
assert len(params["tools"]) == 2
|
|
tool_types = [t.get("type") for t in params["tools"]]
|
|
assert "web_search_preview" in tool_types
|
|
assert "function" in tool_types
|
|
|
|
|
|
@pytest.mark.vcr()
|
|
def test_openai_responses_api_with_web_search():
|
|
"""Test Responses API with web_search built-in tool."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o-mini",
|
|
api="responses",
|
|
builtin_tools=["web_search"],
|
|
)
|
|
|
|
result = llm.call("What is the current population of Tokyo? Be brief.")
|
|
|
|
assert isinstance(result, str)
|
|
assert len(result) > 0
|
|
|
|
|
|
def test_responses_api_result_dataclass():
|
|
"""Test ResponsesAPIResult dataclass functionality."""
|
|
result = ResponsesAPIResult(
|
|
text="Hello, world!",
|
|
response_id="resp_123",
|
|
)
|
|
|
|
assert result.text == "Hello, world!"
|
|
assert result.response_id == "resp_123"
|
|
assert result.web_search_results == []
|
|
assert result.file_search_results == []
|
|
assert result.code_interpreter_results == []
|
|
assert result.computer_use_results == []
|
|
assert result.reasoning_summaries == []
|
|
assert result.function_calls == []
|
|
assert not result.has_tool_outputs()
|
|
assert not result.has_reasoning()
|
|
|
|
|
|
def test_responses_api_result_has_tool_outputs():
|
|
"""Test ResponsesAPIResult.has_tool_outputs() method."""
|
|
result_with_web = ResponsesAPIResult(
|
|
text="Test",
|
|
web_search_results=[{"id": "ws_1", "status": "completed", "type": "web_search_call"}],
|
|
)
|
|
assert result_with_web.has_tool_outputs()
|
|
|
|
result_with_file = ResponsesAPIResult(
|
|
text="Test",
|
|
file_search_results=[{"id": "fs_1", "status": "completed", "type": "file_search_call", "queries": [], "results": []}],
|
|
)
|
|
assert result_with_file.has_tool_outputs()
|
|
|
|
|
|
def test_responses_api_result_has_reasoning():
|
|
"""Test ResponsesAPIResult.has_reasoning() method."""
|
|
result_with_reasoning = ResponsesAPIResult(
|
|
text="Test",
|
|
reasoning_summaries=[{"id": "r_1", "type": "reasoning", "summary": []}],
|
|
)
|
|
assert result_with_reasoning.has_reasoning()
|
|
|
|
result_without = ResponsesAPIResult(text="Test")
|
|
assert not result_without.has_reasoning()
|
|
|
|
|
|
def test_openai_responses_api_parse_tool_outputs_param():
|
|
"""Test that parse_tool_outputs parameter is properly configured."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
parse_tool_outputs=True,
|
|
)
|
|
|
|
assert llm.parse_tool_outputs is True
|
|
|
|
|
|
def test_openai_responses_api_parse_tool_outputs_default_false():
|
|
"""Test that parse_tool_outputs defaults to False."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
)
|
|
|
|
assert llm.parse_tool_outputs is False
|
|
|
|
|
|
@pytest.mark.vcr()
|
|
def test_openai_responses_api_with_parse_tool_outputs():
|
|
"""Test Responses API with parse_tool_outputs enabled returns ResponsesAPIResult."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o-mini",
|
|
api="responses",
|
|
builtin_tools=["web_search"],
|
|
parse_tool_outputs=True,
|
|
)
|
|
|
|
result = llm.call("What is the current population of Tokyo? Be very brief.")
|
|
|
|
assert isinstance(result, ResponsesAPIResult)
|
|
assert len(result.text) > 0
|
|
assert result.response_id is not None
|
|
# Web search should have been used
|
|
assert len(result.web_search_results) > 0
|
|
assert result.has_tool_outputs()
|
|
|
|
|
|
@pytest.mark.vcr()
|
|
def test_openai_responses_api_parse_tool_outputs_basic_call():
|
|
"""Test Responses API with parse_tool_outputs but no built-in tools."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o-mini",
|
|
api="responses",
|
|
parse_tool_outputs=True,
|
|
)
|
|
|
|
result = llm.call("Say hello in exactly 3 words.")
|
|
|
|
assert isinstance(result, ResponsesAPIResult)
|
|
assert len(result.text) > 0
|
|
assert result.response_id is not None
|
|
# No built-in tools used
|
|
assert not result.has_tool_outputs()
|
|
|
|
|
|
# ============================================================================
|
|
# Auto-Chaining Tests (Responses API)
|
|
# ============================================================================
|
|
|
|
|
|
def test_openai_responses_api_auto_chain_param():
|
|
"""Test that auto_chain parameter is properly configured."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
auto_chain=True,
|
|
)
|
|
|
|
assert llm.auto_chain is True
|
|
assert llm._last_response_id is None
|
|
|
|
|
|
def test_openai_responses_api_auto_chain_default_false():
|
|
"""Test that auto_chain defaults to False."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
)
|
|
|
|
assert llm.auto_chain is False
|
|
|
|
|
|
def test_openai_responses_api_last_response_id_property():
|
|
"""Test last_response_id property."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
auto_chain=True,
|
|
)
|
|
|
|
# Initially None
|
|
assert llm.last_response_id is None
|
|
|
|
# Simulate setting the internal value
|
|
llm._last_response_id = "resp_test_123"
|
|
assert llm.last_response_id == "resp_test_123"
|
|
|
|
|
|
def test_openai_responses_api_reset_chain():
|
|
"""Test reset_chain() method clears the response ID."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
auto_chain=True,
|
|
)
|
|
|
|
# Set a response ID
|
|
llm._last_response_id = "resp_test_123"
|
|
assert llm.last_response_id == "resp_test_123"
|
|
|
|
# Reset the chain
|
|
llm.reset_chain()
|
|
assert llm.last_response_id is None
|
|
|
|
|
|
def test_openai_responses_api_auto_chain_prepare_params():
|
|
"""Test that _prepare_responses_params uses auto-chained response ID."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
auto_chain=True,
|
|
)
|
|
|
|
# No previous response ID yet
|
|
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
|
|
assert "previous_response_id" not in params
|
|
|
|
# Set a previous response ID
|
|
llm._last_response_id = "resp_previous_123"
|
|
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
|
|
assert params.get("previous_response_id") == "resp_previous_123"
|
|
|
|
|
|
def test_openai_responses_api_explicit_previous_response_id_takes_precedence():
|
|
"""Test that explicit previous_response_id overrides auto-chained ID."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
auto_chain=True,
|
|
previous_response_id="resp_explicit_456",
|
|
)
|
|
|
|
# Set an auto-chained response ID
|
|
llm._last_response_id = "resp_auto_123"
|
|
|
|
# Explicit should take precedence
|
|
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
|
|
assert params.get("previous_response_id") == "resp_explicit_456"
|
|
|
|
|
|
def test_openai_responses_api_auto_chain_disabled_no_tracking():
|
|
"""Test that response ID is not tracked when auto_chain is False."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
auto_chain=False,
|
|
)
|
|
|
|
# Even with a "previous" response ID set internally, params shouldn't use it
|
|
llm._last_response_id = "resp_should_not_use"
|
|
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
|
|
assert "previous_response_id" not in params
|
|
|
|
|
|
@pytest.mark.vcr()
|
|
def test_openai_responses_api_auto_chain_integration():
|
|
"""Test auto-chaining tracks response IDs across calls."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o-mini",
|
|
api="responses",
|
|
auto_chain=True,
|
|
)
|
|
|
|
# First call - should not have previous_response_id
|
|
assert llm.last_response_id is None
|
|
result1 = llm.call("My name is Alice. Remember this.")
|
|
|
|
# After first call, should have a response ID
|
|
assert llm.last_response_id is not None
|
|
first_response_id = llm.last_response_id
|
|
assert first_response_id.startswith("resp_")
|
|
|
|
# Second call - should use the first response ID
|
|
result2 = llm.call("What is my name?")
|
|
|
|
# Response ID should be updated
|
|
assert llm.last_response_id is not None
|
|
assert llm.last_response_id != first_response_id # Should be a new ID
|
|
|
|
# The response should remember context (Alice)
|
|
assert isinstance(result1, str)
|
|
assert isinstance(result2, str)
|
|
|
|
|
|
@pytest.mark.vcr()
|
|
def test_openai_responses_api_auto_chain_with_reset():
|
|
"""Test that reset_chain() properly starts a new conversation."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o-mini",
|
|
api="responses",
|
|
auto_chain=True,
|
|
)
|
|
|
|
# First conversation
|
|
llm.call("My favorite color is blue.")
|
|
first_chain_id = llm.last_response_id
|
|
assert first_chain_id is not None
|
|
|
|
# Reset and start new conversation
|
|
llm.reset_chain()
|
|
assert llm.last_response_id is None
|
|
|
|
# New call should start fresh
|
|
llm.call("Hello!")
|
|
second_chain_id = llm.last_response_id
|
|
assert second_chain_id is not None
|
|
# New conversation, so different response ID
|
|
assert second_chain_id != first_chain_id
|
|
|
|
|
|
# =============================================================================
|
|
# Encrypted Reasoning for ZDR (Zero Data Retention) Tests
|
|
# =============================================================================
|
|
|
|
|
|
def test_openai_responses_api_auto_chain_reasoning_param():
|
|
"""Test that auto_chain_reasoning parameter is properly configured."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
auto_chain_reasoning=True,
|
|
)
|
|
|
|
assert llm.auto_chain_reasoning is True
|
|
assert llm._last_reasoning_items is None
|
|
|
|
|
|
def test_openai_responses_api_auto_chain_reasoning_default_false():
|
|
"""Test that auto_chain_reasoning defaults to False."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
)
|
|
|
|
assert llm.auto_chain_reasoning is False
|
|
|
|
|
|
def test_openai_responses_api_last_reasoning_items_property():
|
|
"""Test last_reasoning_items property."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
auto_chain_reasoning=True,
|
|
)
|
|
|
|
# Initially None
|
|
assert llm.last_reasoning_items is None
|
|
|
|
# Simulate setting the internal value
|
|
mock_items = [{"id": "rs_test_123", "type": "reasoning"}]
|
|
llm._last_reasoning_items = mock_items
|
|
assert llm.last_reasoning_items == mock_items
|
|
|
|
|
|
def test_openai_responses_api_reset_reasoning_chain():
|
|
"""Test reset_reasoning_chain() method clears reasoning items."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
auto_chain_reasoning=True,
|
|
)
|
|
|
|
# Set reasoning items
|
|
mock_items = [{"id": "rs_test_123", "type": "reasoning"}]
|
|
llm._last_reasoning_items = mock_items
|
|
assert llm.last_reasoning_items == mock_items
|
|
|
|
# Reset the reasoning chain
|
|
llm.reset_reasoning_chain()
|
|
assert llm.last_reasoning_items is None
|
|
|
|
|
|
def test_openai_responses_api_auto_chain_reasoning_adds_include():
|
|
"""Test that auto_chain_reasoning adds reasoning.encrypted_content to include."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
auto_chain_reasoning=True,
|
|
)
|
|
|
|
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
|
|
assert "include" in params
|
|
assert "reasoning.encrypted_content" in params["include"]
|
|
|
|
|
|
def test_openai_responses_api_auto_chain_reasoning_preserves_existing_include():
|
|
"""Test that auto_chain_reasoning preserves existing include items."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
auto_chain_reasoning=True,
|
|
include=["file_search_call.results"],
|
|
)
|
|
|
|
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
|
|
assert "include" in params
|
|
assert "reasoning.encrypted_content" in params["include"]
|
|
assert "file_search_call.results" in params["include"]
|
|
|
|
|
|
def test_openai_responses_api_auto_chain_reasoning_no_duplicate_include():
|
|
"""Test that reasoning.encrypted_content is not duplicated if already in include."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
auto_chain_reasoning=True,
|
|
include=["reasoning.encrypted_content"],
|
|
)
|
|
|
|
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
|
|
assert "include" in params
|
|
# Should only appear once
|
|
assert params["include"].count("reasoning.encrypted_content") == 1
|
|
|
|
|
|
def test_openai_responses_api_auto_chain_reasoning_prepends_to_input():
|
|
"""Test that stored reasoning items are prepended to input."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
auto_chain_reasoning=True,
|
|
)
|
|
|
|
# Simulate stored reasoning items
|
|
mock_reasoning = MagicMock()
|
|
mock_reasoning.type = "reasoning"
|
|
mock_reasoning.id = "rs_test_123"
|
|
llm._last_reasoning_items = [mock_reasoning]
|
|
|
|
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
|
|
|
|
# Input should have reasoning item first, then the message
|
|
assert len(params["input"]) == 2
|
|
assert params["input"][0] == mock_reasoning
|
|
assert params["input"][1]["role"] == "user"
|
|
|
|
|
|
def test_openai_responses_api_auto_chain_reasoning_disabled_no_include():
|
|
"""Test that reasoning.encrypted_content is not added when auto_chain_reasoning is False."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
auto_chain_reasoning=False,
|
|
)
|
|
|
|
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
|
|
# Should not have include at all (unless explicitly set)
|
|
assert "include" not in params or "reasoning.encrypted_content" not in params.get("include", [])
|
|
|
|
|
|
def test_openai_responses_api_auto_chain_reasoning_disabled_no_prepend():
|
|
"""Test that reasoning items are not prepended when auto_chain_reasoning is False."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
auto_chain_reasoning=False,
|
|
)
|
|
|
|
# Even with stored reasoning items, they should not be prepended
|
|
mock_reasoning = MagicMock()
|
|
mock_reasoning.type = "reasoning"
|
|
llm._last_reasoning_items = [mock_reasoning]
|
|
|
|
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
|
|
|
|
# Input should only have the message, not the reasoning item
|
|
assert len(params["input"]) == 1
|
|
assert params["input"][0]["role"] == "user"
|
|
|
|
|
|
def test_openai_responses_api_both_auto_chains_work_together():
|
|
"""Test that auto_chain and auto_chain_reasoning can be used together."""
|
|
llm = OpenAICompletion(
|
|
model="gpt-4o",
|
|
api="responses",
|
|
auto_chain=True,
|
|
auto_chain_reasoning=True,
|
|
)
|
|
|
|
assert llm.auto_chain is True
|
|
assert llm.auto_chain_reasoning is True
|
|
assert llm._last_response_id is None
|
|
assert llm._last_reasoning_items is None
|
|
|
|
# Set both internal values
|
|
llm._last_response_id = "resp_123"
|
|
mock_reasoning = MagicMock()
|
|
mock_reasoning.type = "reasoning"
|
|
llm._last_reasoning_items = [mock_reasoning]
|
|
|
|
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
|
|
|
|
# Both should be applied
|
|
assert params.get("previous_response_id") == "resp_123"
|
|
assert "reasoning.encrypted_content" in params["include"]
|
|
assert len(params["input"]) == 2 # Reasoning item + message
|