Files
crewAI/lib/crewai/tests/llms/openai/test_openai.py
Greyson LaLonde 7c9ce9ccd8 feat(openai): add Responses API support with auto-chaining and ZDR compliance
- Add full OpenAI Responses API support alongside existing Chat Completions API
- Implement auto_chain parameter to automatically track and pass previous_response_id
- Add auto_chain_reasoning for encrypted reasoning in ZDR (Zero Data Retention) scenarios
- Parse built-in tool outputs: web_search, file_search, computer_use, code_interpreter
- Support all Responses API parameters: reasoning, include, tools, truncation, etc.
- Add streaming support for Responses API with proper event handling
- Include 67 tests covering all new functionality
2026-01-23 01:53:15 -05:00

1395 lines
44 KiB
Python

import os
import sys
import types
from unittest.mock import patch, MagicMock
import openai
import pytest
from crewai.llm import LLM
from crewai.llms.providers.openai.completion import OpenAICompletion, ResponsesAPIResult
from crewai.crew import Crew
from crewai.agent import Agent
from crewai.task import Task
from crewai.cli.constants import DEFAULT_LLM_MODEL
def test_openai_completion_is_used_when_openai_provider():
"""
Test that OpenAICompletion from completion.py is used when LLM uses provider 'openai'
"""
llm = LLM(model="gpt-4o")
assert llm.__class__.__name__ == "OpenAICompletion"
assert llm.provider == "openai"
assert llm.model == "gpt-4o"
def test_openai_completion_is_used_when_no_provider_prefix():
"""
Test that OpenAICompletion is used when no provider prefix is given (defaults to openai)
"""
llm = LLM(model="gpt-4o")
from crewai.llms.providers.openai.completion import OpenAICompletion
assert isinstance(llm, OpenAICompletion)
assert llm.provider == "openai"
assert llm.model == "gpt-4o"
@pytest.mark.vcr()
def test_openai_is_default_provider_without_explicit_llm_set_on_agent():
"""
Test that OpenAI is the default provider when no explicit LLM is set on the agent
"""
agent = Agent(
role="Research Assistant",
goal="Find information about the population of Tokyo",
backstory="You are a helpful research assistant.",
llm=LLM(model="gpt-4o-mini"),
)
task = Task(
description="Find information about the population of Tokyo",
expected_output="The population of Tokyo is 10 million",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff()
assert crew.agents[0].llm.__class__.__name__ == "OpenAICompletion"
assert crew.agents[0].llm.model == "gpt-4o-mini"
def test_openai_completion_module_is_imported():
"""
Test that the completion module is properly imported when using OpenAI provider
"""
module_name = "crewai.llms.providers.openai.completion"
# Remove module from cache if it exists
if module_name in sys.modules:
del sys.modules[module_name]
# Create LLM instance - this should trigger the import
LLM(model="gpt-4o")
# Verify the module was imported
assert module_name in sys.modules
completion_mod = sys.modules[module_name]
assert isinstance(completion_mod, types.ModuleType)
# Verify the class exists in the module
assert hasattr(completion_mod, 'OpenAICompletion')
def test_native_openai_raises_error_when_initialization_fails():
"""
Test that LLM raises ImportError when native OpenAI completion fails to initialize.
This ensures we don't silently fall back when there's a configuration issue.
"""
# Mock the _get_native_provider to return a failing class
with patch('crewai.llm.LLM._get_native_provider') as mock_get_provider:
class FailingCompletion:
def __init__(self, *args, **kwargs):
raise Exception("Native SDK failed")
mock_get_provider.return_value = FailingCompletion
# This should raise ImportError, not fall back to LiteLLM
with pytest.raises(ImportError) as excinfo:
LLM(model="gpt-4o")
assert "Error importing native provider" in str(excinfo.value)
assert "Native SDK failed" in str(excinfo.value)
def test_openai_completion_initialization_parameters():
"""
Test that OpenAICompletion is initialized with correct parameters
"""
llm = LLM(
model="gpt-4o",
temperature=0.7,
max_tokens=1000,
api_key="test-key"
)
from crewai.llms.providers.openai.completion import OpenAICompletion
assert isinstance(llm, OpenAICompletion)
assert llm.model == "gpt-4o"
assert llm.temperature == 0.7
assert llm.max_tokens == 1000
def test_openai_completion_call():
"""
Test that OpenAICompletion call method works
"""
llm = LLM(model="openai/gpt-4o")
# Mock the call method on the instance
with patch.object(llm, 'call', return_value="Hello! I'm ready to help.") as mock_call:
result = llm.call("Hello, how are you?")
assert result == "Hello! I'm ready to help."
mock_call.assert_called_once_with("Hello, how are you?")
def test_openai_completion_called_during_crew_execution():
"""
Test that OpenAICompletion.call is actually invoked when running a crew
"""
# Create the LLM instance first
openai_llm = LLM(model="openai/gpt-4o")
# Mock the call method on the specific instance
with patch.object(openai_llm, 'call', return_value="Tokyo has 14 million people.") as mock_call:
# Create agent with explicit LLM configuration
agent = Agent(
role="Research Assistant",
goal="Find population info",
backstory="You research populations.",
llm=openai_llm,
)
task = Task(
description="Find Tokyo population",
expected_output="Population number",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
# Verify mock was called
assert mock_call.called
assert "14 million" in str(result)
def test_openai_completion_call_arguments():
"""
Test that OpenAICompletion.call is invoked with correct arguments
"""
# Create LLM instance first (like working tests)
openai_llm = LLM(model="openai/gpt-4o")
# Mock the instance method (like working tests)
with patch.object(openai_llm, 'call') as mock_call:
mock_call.return_value = "Task completed successfully."
agent = Agent(
role="Test Agent",
goal="Complete a simple task",
backstory="You are a test agent.",
llm=openai_llm # Use same instance
)
task = Task(
description="Say hello world",
expected_output="Hello world",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff()
# Verify call was made
assert mock_call.called
# Check the arguments passed to the call method
call_args = mock_call.call_args
assert call_args is not None
# The first argument should be the messages
messages = call_args[0][0] # First positional argument
assert isinstance(messages, (str, list))
# Verify that the task description appears in the messages
if isinstance(messages, str):
assert "hello world" in messages.lower()
elif isinstance(messages, list):
message_content = str(messages).lower()
assert "hello world" in message_content
def test_multiple_openai_calls_in_crew():
"""
Test that OpenAICompletion.call is invoked multiple times for multiple tasks
"""
# Create LLM instance first
openai_llm = LLM(model="openai/gpt-4o")
# Mock the instance method
with patch.object(openai_llm, 'call') as mock_call:
mock_call.return_value = "Task completed."
agent = Agent(
role="Multi-task Agent",
goal="Complete multiple tasks",
backstory="You can handle multiple tasks.",
llm=openai_llm # Use same instance
)
task1 = Task(
description="First task",
expected_output="First result",
agent=agent,
)
task2 = Task(
description="Second task",
expected_output="Second result",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task1, task2]
)
crew.kickoff()
# Verify multiple calls were made
assert mock_call.call_count >= 2 # At least one call per task
# Verify each call had proper arguments
for call in mock_call.call_args_list:
assert len(call[0]) > 0 # Has positional arguments
messages = call[0][0]
assert messages is not None
def test_openai_completion_with_tools():
"""
Test that OpenAICompletion.call is invoked with tools when agent has tools
"""
from crewai.tools import tool
@tool
def sample_tool(query: str) -> str:
"""A sample tool for testing"""
return f"Tool result for: {query}"
# Create LLM instance first
openai_llm = LLM(model="openai/gpt-4o")
# Mock the instance method (not the class method)
with patch.object(openai_llm, 'call') as mock_call:
mock_call.return_value = "Task completed with tools."
agent = Agent(
role="Tool User",
goal="Use tools to complete tasks",
backstory="You can use tools.",
llm=openai_llm, # Use same instance
tools=[sample_tool]
)
task = Task(
description="Use the sample tool",
expected_output="Tool usage result",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff()
assert mock_call.called
call_args = mock_call.call_args
call_kwargs = call_args[1] if len(call_args) > 1 else {}
if 'tools' in call_kwargs:
assert call_kwargs['tools'] is not None
assert len(call_kwargs['tools']) > 0
@pytest.mark.vcr()
def test_openai_completion_call_returns_usage_metrics():
"""
Test that OpenAICompletion.call returns usage metrics
"""
agent = Agent(
role="Research Assistant",
goal="Find information about the population of Tokyo",
backstory="You are a helpful research assistant.",
llm=LLM(model="gpt-4o"),
verbose=True,
)
task = Task(
description="Find information about the population of Tokyo",
expected_output="The population of Tokyo is 10 million",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
assert result.token_usage is not None
assert result.token_usage.total_tokens == 289
assert result.token_usage.prompt_tokens == 173
assert result.token_usage.completion_tokens == 116
assert result.token_usage.successful_requests == 1
assert result.token_usage.cached_prompt_tokens == 0
@pytest.mark.skip(reason="Allow for litellm")
def test_openai_raises_error_when_model_not_supported():
"""Test that OpenAICompletion raises ValueError when model not supported"""
with patch('crewai.llms.providers.openai.completion.OpenAI') as mock_openai_class:
mock_client = MagicMock()
mock_openai_class.return_value = mock_client
mock_client.chat.completions.create.side_effect = openai.NotFoundError(
message="The model `model-doesnt-exist` does not exist",
response=MagicMock(),
body={}
)
llm = LLM(model="openai/model-doesnt-exist")
with pytest.raises(ValueError, match="Model.*not found"):
llm.call("Hello")
def test_openai_client_setup_with_extra_arguments():
"""
Test that OpenAICompletion is initialized with correct parameters
"""
llm = LLM(
model="gpt-4o",
temperature=0.7,
max_tokens=1000,
top_p=0.5,
max_retries=3,
timeout=30
)
# Check that model parameters are stored on the LLM instance
assert llm.temperature == 0.7
assert llm.max_tokens == 1000
assert llm.top_p == 0.5
# Check that client parameters are properly configured
assert llm.client.max_retries == 3
assert llm.client.timeout == 30
# Test that parameters are properly used in API calls
with patch.object(llm.client.chat.completions, 'create') as mock_create:
mock_create.return_value = MagicMock(
choices=[MagicMock(message=MagicMock(content="test response", tool_calls=None))],
usage=MagicMock(prompt_tokens=10, completion_tokens=20, total_tokens=30)
)
llm.call("Hello")
# Verify the API was called with the right parameters
call_args = mock_create.call_args[1] # keyword arguments
assert call_args['temperature'] == 0.7
assert call_args['max_tokens'] == 1000
assert call_args['top_p'] == 0.5
assert call_args['model'] == 'gpt-4o'
def test_extra_arguments_are_passed_to_openai_completion():
"""
Test that extra arguments are passed to OpenAICompletion
"""
llm = LLM(model="gpt-4o", temperature=0.7, max_tokens=1000, top_p=0.5, max_retries=3)
with patch.object(llm.client.chat.completions, 'create') as mock_create:
mock_create.return_value = MagicMock(
choices=[MagicMock(message=MagicMock(content="test response", tool_calls=None))],
usage=MagicMock(prompt_tokens=10, completion_tokens=20, total_tokens=30)
)
llm.call("Hello, how are you?")
assert mock_create.called
call_kwargs = mock_create.call_args[1]
assert call_kwargs['temperature'] == 0.7
assert call_kwargs['max_tokens'] == 1000
assert call_kwargs['top_p'] == 0.5
assert call_kwargs['model'] == 'gpt-4o'
def test_openai_get_client_params_with_api_base():
"""
Test that _get_client_params correctly converts api_base to base_url
"""
llm = OpenAICompletion(
model="gpt-4o",
api_base="https://custom.openai.com/v1",
)
client_params = llm._get_client_params()
assert client_params["base_url"] == "https://custom.openai.com/v1"
def test_openai_get_client_params_with_base_url_priority():
"""
Test that base_url takes priority over api_base in _get_client_params
"""
llm = OpenAICompletion(
model="gpt-4o",
base_url="https://priority.openai.com/v1",
api_base="https://fallback.openai.com/v1",
)
client_params = llm._get_client_params()
assert client_params["base_url"] == "https://priority.openai.com/v1"
def test_openai_get_client_params_with_env_var():
"""
Test that _get_client_params uses OPENAI_BASE_URL environment variable as fallback
"""
with patch.dict(os.environ, {
"OPENAI_BASE_URL": "https://env.openai.com/v1",
}):
llm = OpenAICompletion(model="gpt-4o")
client_params = llm._get_client_params()
assert client_params["base_url"] == "https://env.openai.com/v1"
def test_openai_get_client_params_priority_order():
"""
Test the priority order: base_url > api_base > OPENAI_BASE_URL env var
"""
with patch.dict(os.environ, {
"OPENAI_BASE_URL": "https://env.openai.com/v1",
}):
# Test base_url beats api_base and env var
llm1 = OpenAICompletion(
model="gpt-4o",
base_url="https://base-url.openai.com/v1",
api_base="https://api-base.openai.com/v1",
)
params1 = llm1._get_client_params()
assert params1["base_url"] == "https://base-url.openai.com/v1"
# Test api_base beats env var when base_url is None
llm2 = OpenAICompletion(
model="gpt-4o",
api_base="https://api-base.openai.com/v1",
)
params2 = llm2._get_client_params()
assert params2["base_url"] == "https://api-base.openai.com/v1"
# Test env var is used when both base_url and api_base are None
llm3 = OpenAICompletion(model="gpt-4o")
params3 = llm3._get_client_params()
assert params3["base_url"] == "https://env.openai.com/v1"
def test_openai_get_client_params_no_base_url(monkeypatch):
"""
Test that _get_client_params works correctly when no base_url is specified
"""
# Clear env vars that could set base_url
monkeypatch.delenv("OPENAI_BASE_URL", raising=False)
monkeypatch.delenv("OPENAI_API_BASE", raising=False)
llm = OpenAICompletion(model="gpt-4o")
client_params = llm._get_client_params()
# When no base_url is provided, it should not be in the params (filtered out as None)
assert "base_url" not in client_params or client_params.get("base_url") is None
def test_openai_streaming_with_response_model():
"""
Test that streaming with response_model works correctly and doesn't call invalid API methods.
This test verifies the fix for the bug where streaming with response_model attempted to call
self.client.responses.stream() with invalid parameters (input, text_format).
"""
from pydantic import BaseModel
class TestResponse(BaseModel):
"""Test response model."""
answer: str
confidence: float
llm = LLM(model="openai/gpt-4o", stream=True)
with patch.object(llm.client.beta.chat.completions, "stream") as mock_stream:
# Create mock chunks with content.delta event structure
mock_chunk1 = MagicMock()
mock_chunk1.type = "content.delta"
mock_chunk1.delta = '{"answer": "test", '
mock_chunk2 = MagicMock()
mock_chunk2.type = "content.delta"
mock_chunk2.delta = '"confidence": 0.95}'
# Create mock final completion with parsed result
mock_parsed = TestResponse(answer="test", confidence=0.95)
mock_message = MagicMock()
mock_message.parsed = mock_parsed
mock_choice = MagicMock()
mock_choice.message = mock_message
mock_final_completion = MagicMock()
mock_final_completion.choices = [mock_choice]
# Create mock stream context manager
mock_stream_obj = MagicMock()
mock_stream_obj.__enter__ = MagicMock(return_value=mock_stream_obj)
mock_stream_obj.__exit__ = MagicMock(return_value=None)
mock_stream_obj.__iter__ = MagicMock(return_value=iter([mock_chunk1, mock_chunk2]))
mock_stream_obj.get_final_completion = MagicMock(return_value=mock_final_completion)
mock_stream.return_value = mock_stream_obj
result = llm.call("Test question", response_model=TestResponse)
assert result is not None
assert isinstance(result, str)
assert mock_stream.called
call_kwargs = mock_stream.call_args[1]
assert call_kwargs["model"] == "gpt-4o"
assert call_kwargs["response_format"] == TestResponse
assert "input" not in call_kwargs
assert "text_format" not in call_kwargs
@pytest.mark.vcr()
def test_openai_response_format_with_pydantic_model():
"""
Test that response_format with a Pydantic BaseModel returns structured output.
"""
from pydantic import BaseModel, Field
class AnswerResponse(BaseModel):
"""Response model with structured fields."""
answer: str = Field(description="The answer to the question")
confidence: float = Field(description="Confidence score between 0 and 1")
llm = LLM(model="gpt-4o", response_format=AnswerResponse)
result = llm.call("What is the capital of France? Be concise.")
assert isinstance(result, AnswerResponse)
assert result.answer is not None
assert 0 <= result.confidence <= 1
@pytest.mark.vcr()
def test_openai_response_format_with_dict():
"""
Test that response_format with a dict returns JSON output.
"""
import json
llm = LLM(model="gpt-4o", response_format={"type": "json_object"})
result = llm.call("Return a JSON object with a 'status' field set to 'success'")
parsed = json.loads(result)
assert "status" in parsed
@pytest.mark.vcr()
def test_openai_response_format_none():
"""
Test that when response_format is None, the API returns plain text.
"""
llm = LLM(model="gpt-4o", response_format=None)
result = llm.call("Say hello in one word")
assert isinstance(result, str)
assert len(result) > 0
@pytest.mark.vcr()
def test_openai_streaming_returns_usage_metrics():
"""
Test that OpenAI streaming calls return proper token usage metrics.
"""
agent = Agent(
role="Research Assistant",
goal="Find information about the capital of France",
backstory="You are a helpful research assistant.",
llm=LLM(model="gpt-4o-mini", stream=True),
verbose=True,
)
task = Task(
description="What is the capital of France?",
expected_output="The capital of France",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
assert result.token_usage is not None
assert result.token_usage.total_tokens > 0
assert result.token_usage.prompt_tokens > 0
assert result.token_usage.completion_tokens > 0
assert result.token_usage.successful_requests >= 1
def test_openai_responses_api_initialization():
"""Test that OpenAI Responses API can be initialized with api='responses'."""
llm = OpenAICompletion(
model="gpt-5",
api="responses",
instructions="You are a helpful assistant.",
store=True,
)
assert llm.api == "responses"
assert llm.instructions == "You are a helpful assistant."
assert llm.store is True
assert llm.model == "gpt-5"
def test_openai_responses_api_default_is_completions():
"""Test that the default API is 'completions' for backward compatibility."""
llm = OpenAICompletion(model="gpt-4o")
assert llm.api == "completions"
def test_openai_responses_api_prepare_params():
"""Test that Responses API params are prepared correctly."""
llm = OpenAICompletion(
model="gpt-5",
api="responses",
instructions="Base instructions.",
store=True,
temperature=0.7,
)
messages = [
{"role": "system", "content": "System message."},
{"role": "user", "content": "Hello!"},
]
params = llm._prepare_responses_params(messages)
assert params["model"] == "gpt-5"
assert "Base instructions." in params["instructions"]
assert "System message." in params["instructions"]
assert params["store"] is True
assert params["temperature"] == 0.7
assert params["input"] == [{"role": "user", "content": "Hello!"}]
def test_openai_responses_api_tool_format():
"""Test that tools are converted to Responses API format (internally-tagged)."""
llm = OpenAICompletion(model="gpt-5", api="responses")
tools = [
{
"name": "get_weather",
"description": "Get the weather for a location",
"parameters": {
"type": "object",
"properties": {"location": {"type": "string"}},
"required": ["location"],
},
}
]
responses_tools = llm._convert_tools_for_responses(tools)
assert len(responses_tools) == 1
tool = responses_tools[0]
assert tool["type"] == "function"
assert tool["name"] == "get_weather"
assert tool["description"] == "Get the weather for a location"
assert "parameters" in tool
assert "function" not in tool
def test_openai_completions_api_tool_format():
"""Test that tools are converted to Chat Completions API format (externally-tagged)."""
llm = OpenAICompletion(model="gpt-4o", api="completions")
tools = [
{
"name": "get_weather",
"description": "Get the weather for a location",
"parameters": {
"type": "object",
"properties": {"location": {"type": "string"}},
"required": ["location"],
},
}
]
completions_tools = llm._convert_tools_for_interference(tools)
assert len(completions_tools) == 1
tool = completions_tools[0]
assert tool["type"] == "function"
assert "function" in tool
assert tool["function"]["name"] == "get_weather"
assert tool["function"]["description"] == "Get the weather for a location"
def test_openai_responses_api_structured_output_format():
"""Test that structured outputs use text.format for Responses API."""
from pydantic import BaseModel
class Person(BaseModel):
name: str
age: int
llm = OpenAICompletion(model="gpt-5", api="responses")
messages = [{"role": "user", "content": "Extract: Jane, 25"}]
params = llm._prepare_responses_params(messages, response_model=Person)
assert "text" in params
assert "format" in params["text"]
assert params["text"]["format"]["type"] == "json_schema"
assert params["text"]["format"]["name"] == "Person"
assert params["text"]["format"]["strict"] is True
def test_openai_responses_api_with_previous_response_id():
"""Test that previous_response_id is passed for multi-turn conversations."""
llm = OpenAICompletion(
model="gpt-5",
api="responses",
previous_response_id="resp_abc123",
store=True,
)
messages = [{"role": "user", "content": "Continue our conversation."}]
params = llm._prepare_responses_params(messages)
assert params["previous_response_id"] == "resp_abc123"
assert params["store"] is True
def test_openai_responses_api_call_routing():
"""Test that call() routes to the correct API based on the api parameter."""
from unittest.mock import patch, MagicMock
llm_completions = OpenAICompletion(model="gpt-4o", api="completions")
llm_responses = OpenAICompletion(model="gpt-5", api="responses")
with patch.object(
llm_completions, "_call_completions", return_value="completions result"
) as mock_completions:
result = llm_completions.call("Hello")
mock_completions.assert_called_once()
assert result == "completions result"
with patch.object(
llm_responses, "_call_responses", return_value="responses result"
) as mock_responses:
result = llm_responses.call("Hello")
mock_responses.assert_called_once()
assert result == "responses result"
# =============================================================================
# VCR Integration Tests for Responses API
# =============================================================================
@pytest.mark.vcr()
def test_openai_responses_api_basic_call():
"""Test basic Responses API call with text generation."""
llm = OpenAICompletion(
model="gpt-4o-mini",
api="responses",
instructions="You are a helpful assistant. Be concise.",
)
result = llm.call("What is 2 + 2? Answer with just the number.")
assert isinstance(result, str)
assert "4" in result
@pytest.mark.vcr()
def test_openai_responses_api_with_structured_output():
"""Test Responses API with structured output using Pydantic model."""
from pydantic import BaseModel, Field
class MathAnswer(BaseModel):
"""Structured math answer."""
result: int = Field(description="The numerical result")
explanation: str = Field(description="Brief explanation")
llm = OpenAICompletion(
model="gpt-4o-mini",
api="responses",
)
result = llm.call("What is 5 * 7?", response_model=MathAnswer)
assert isinstance(result, MathAnswer)
assert result.result == 35
@pytest.mark.vcr()
def test_openai_responses_api_with_system_message_extraction():
"""Test that system messages are properly extracted to instructions."""
llm = OpenAICompletion(
model="gpt-4o-mini",
api="responses",
)
messages = [
{"role": "system", "content": "You always respond in uppercase letters only."},
{"role": "user", "content": "Say hello"},
]
result = llm.call(messages)
assert isinstance(result, str)
assert result.isupper() or "HELLO" in result.upper()
@pytest.mark.vcr()
def test_openai_responses_api_streaming():
"""Test Responses API with streaming enabled."""
llm = OpenAICompletion(
model="gpt-4o-mini",
api="responses",
stream=True,
instructions="Be very concise.",
)
result = llm.call("Count from 1 to 3, separated by commas.")
assert isinstance(result, str)
assert "1" in result
assert "2" in result
assert "3" in result
@pytest.mark.vcr()
def test_openai_responses_api_returns_usage_metrics():
"""Test that Responses API calls return proper token usage metrics."""
llm = OpenAICompletion(
model="gpt-4o-mini",
api="responses",
)
llm.call("Say hello")
usage = llm.get_token_usage_summary()
assert usage.total_tokens > 0
assert usage.prompt_tokens > 0
assert usage.completion_tokens > 0
def test_openai_responses_api_builtin_tools_param():
"""Test that builtin_tools parameter is properly configured."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
builtin_tools=["web_search", "code_interpreter"],
)
assert llm.builtin_tools == ["web_search", "code_interpreter"]
messages = [{"role": "user", "content": "Test"}]
params = llm._prepare_responses_params(messages)
assert "tools" in params
tool_types = [t["type"] for t in params["tools"]]
assert "web_search_preview" in tool_types
assert "code_interpreter" in tool_types
def test_openai_responses_api_builtin_tools_with_custom_tools():
"""Test that builtin_tools can be combined with custom function tools."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
builtin_tools=["web_search"],
)
custom_tools = [
{
"name": "get_weather",
"description": "Get weather for a location",
"parameters": {"type": "object", "properties": {}},
}
]
messages = [{"role": "user", "content": "Test"}]
params = llm._prepare_responses_params(messages, tools=custom_tools)
assert len(params["tools"]) == 2
tool_types = [t.get("type") for t in params["tools"]]
assert "web_search_preview" in tool_types
assert "function" in tool_types
@pytest.mark.vcr()
def test_openai_responses_api_with_web_search():
"""Test Responses API with web_search built-in tool."""
llm = OpenAICompletion(
model="gpt-4o-mini",
api="responses",
builtin_tools=["web_search"],
)
result = llm.call("What is the current population of Tokyo? Be brief.")
assert isinstance(result, str)
assert len(result) > 0
def test_responses_api_result_dataclass():
"""Test ResponsesAPIResult dataclass functionality."""
result = ResponsesAPIResult(
text="Hello, world!",
response_id="resp_123",
)
assert result.text == "Hello, world!"
assert result.response_id == "resp_123"
assert result.web_search_results == []
assert result.file_search_results == []
assert result.code_interpreter_results == []
assert result.computer_use_results == []
assert result.reasoning_summaries == []
assert result.function_calls == []
assert not result.has_tool_outputs()
assert not result.has_reasoning()
def test_responses_api_result_has_tool_outputs():
"""Test ResponsesAPIResult.has_tool_outputs() method."""
result_with_web = ResponsesAPIResult(
text="Test",
web_search_results=[{"id": "ws_1", "status": "completed", "type": "web_search_call"}],
)
assert result_with_web.has_tool_outputs()
result_with_file = ResponsesAPIResult(
text="Test",
file_search_results=[{"id": "fs_1", "status": "completed", "type": "file_search_call", "queries": [], "results": []}],
)
assert result_with_file.has_tool_outputs()
def test_responses_api_result_has_reasoning():
"""Test ResponsesAPIResult.has_reasoning() method."""
result_with_reasoning = ResponsesAPIResult(
text="Test",
reasoning_summaries=[{"id": "r_1", "type": "reasoning", "summary": []}],
)
assert result_with_reasoning.has_reasoning()
result_without = ResponsesAPIResult(text="Test")
assert not result_without.has_reasoning()
def test_openai_responses_api_parse_tool_outputs_param():
"""Test that parse_tool_outputs parameter is properly configured."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
parse_tool_outputs=True,
)
assert llm.parse_tool_outputs is True
def test_openai_responses_api_parse_tool_outputs_default_false():
"""Test that parse_tool_outputs defaults to False."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
)
assert llm.parse_tool_outputs is False
@pytest.mark.vcr()
def test_openai_responses_api_with_parse_tool_outputs():
"""Test Responses API with parse_tool_outputs enabled returns ResponsesAPIResult."""
llm = OpenAICompletion(
model="gpt-4o-mini",
api="responses",
builtin_tools=["web_search"],
parse_tool_outputs=True,
)
result = llm.call("What is the current population of Tokyo? Be very brief.")
assert isinstance(result, ResponsesAPIResult)
assert len(result.text) > 0
assert result.response_id is not None
# Web search should have been used
assert len(result.web_search_results) > 0
assert result.has_tool_outputs()
@pytest.mark.vcr()
def test_openai_responses_api_parse_tool_outputs_basic_call():
"""Test Responses API with parse_tool_outputs but no built-in tools."""
llm = OpenAICompletion(
model="gpt-4o-mini",
api="responses",
parse_tool_outputs=True,
)
result = llm.call("Say hello in exactly 3 words.")
assert isinstance(result, ResponsesAPIResult)
assert len(result.text) > 0
assert result.response_id is not None
# No built-in tools used
assert not result.has_tool_outputs()
# ============================================================================
# Auto-Chaining Tests (Responses API)
# ============================================================================
def test_openai_responses_api_auto_chain_param():
"""Test that auto_chain parameter is properly configured."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
auto_chain=True,
)
assert llm.auto_chain is True
assert llm._last_response_id is None
def test_openai_responses_api_auto_chain_default_false():
"""Test that auto_chain defaults to False."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
)
assert llm.auto_chain is False
def test_openai_responses_api_last_response_id_property():
"""Test last_response_id property."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
auto_chain=True,
)
# Initially None
assert llm.last_response_id is None
# Simulate setting the internal value
llm._last_response_id = "resp_test_123"
assert llm.last_response_id == "resp_test_123"
def test_openai_responses_api_reset_chain():
"""Test reset_chain() method clears the response ID."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
auto_chain=True,
)
# Set a response ID
llm._last_response_id = "resp_test_123"
assert llm.last_response_id == "resp_test_123"
# Reset the chain
llm.reset_chain()
assert llm.last_response_id is None
def test_openai_responses_api_auto_chain_prepare_params():
"""Test that _prepare_responses_params uses auto-chained response ID."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
auto_chain=True,
)
# No previous response ID yet
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
assert "previous_response_id" not in params
# Set a previous response ID
llm._last_response_id = "resp_previous_123"
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
assert params.get("previous_response_id") == "resp_previous_123"
def test_openai_responses_api_explicit_previous_response_id_takes_precedence():
"""Test that explicit previous_response_id overrides auto-chained ID."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
auto_chain=True,
previous_response_id="resp_explicit_456",
)
# Set an auto-chained response ID
llm._last_response_id = "resp_auto_123"
# Explicit should take precedence
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
assert params.get("previous_response_id") == "resp_explicit_456"
def test_openai_responses_api_auto_chain_disabled_no_tracking():
"""Test that response ID is not tracked when auto_chain is False."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
auto_chain=False,
)
# Even with a "previous" response ID set internally, params shouldn't use it
llm._last_response_id = "resp_should_not_use"
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
assert "previous_response_id" not in params
@pytest.mark.vcr()
def test_openai_responses_api_auto_chain_integration():
"""Test auto-chaining tracks response IDs across calls."""
llm = OpenAICompletion(
model="gpt-4o-mini",
api="responses",
auto_chain=True,
)
# First call - should not have previous_response_id
assert llm.last_response_id is None
result1 = llm.call("My name is Alice. Remember this.")
# After first call, should have a response ID
assert llm.last_response_id is not None
first_response_id = llm.last_response_id
assert first_response_id.startswith("resp_")
# Second call - should use the first response ID
result2 = llm.call("What is my name?")
# Response ID should be updated
assert llm.last_response_id is not None
assert llm.last_response_id != first_response_id # Should be a new ID
# The response should remember context (Alice)
assert isinstance(result1, str)
assert isinstance(result2, str)
@pytest.mark.vcr()
def test_openai_responses_api_auto_chain_with_reset():
"""Test that reset_chain() properly starts a new conversation."""
llm = OpenAICompletion(
model="gpt-4o-mini",
api="responses",
auto_chain=True,
)
# First conversation
llm.call("My favorite color is blue.")
first_chain_id = llm.last_response_id
assert first_chain_id is not None
# Reset and start new conversation
llm.reset_chain()
assert llm.last_response_id is None
# New call should start fresh
llm.call("Hello!")
second_chain_id = llm.last_response_id
assert second_chain_id is not None
# New conversation, so different response ID
assert second_chain_id != first_chain_id
# =============================================================================
# Encrypted Reasoning for ZDR (Zero Data Retention) Tests
# =============================================================================
def test_openai_responses_api_auto_chain_reasoning_param():
"""Test that auto_chain_reasoning parameter is properly configured."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
auto_chain_reasoning=True,
)
assert llm.auto_chain_reasoning is True
assert llm._last_reasoning_items is None
def test_openai_responses_api_auto_chain_reasoning_default_false():
"""Test that auto_chain_reasoning defaults to False."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
)
assert llm.auto_chain_reasoning is False
def test_openai_responses_api_last_reasoning_items_property():
"""Test last_reasoning_items property."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
auto_chain_reasoning=True,
)
# Initially None
assert llm.last_reasoning_items is None
# Simulate setting the internal value
mock_items = [{"id": "rs_test_123", "type": "reasoning"}]
llm._last_reasoning_items = mock_items
assert llm.last_reasoning_items == mock_items
def test_openai_responses_api_reset_reasoning_chain():
"""Test reset_reasoning_chain() method clears reasoning items."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
auto_chain_reasoning=True,
)
# Set reasoning items
mock_items = [{"id": "rs_test_123", "type": "reasoning"}]
llm._last_reasoning_items = mock_items
assert llm.last_reasoning_items == mock_items
# Reset the reasoning chain
llm.reset_reasoning_chain()
assert llm.last_reasoning_items is None
def test_openai_responses_api_auto_chain_reasoning_adds_include():
"""Test that auto_chain_reasoning adds reasoning.encrypted_content to include."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
auto_chain_reasoning=True,
)
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
assert "include" in params
assert "reasoning.encrypted_content" in params["include"]
def test_openai_responses_api_auto_chain_reasoning_preserves_existing_include():
"""Test that auto_chain_reasoning preserves existing include items."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
auto_chain_reasoning=True,
include=["file_search_call.results"],
)
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
assert "include" in params
assert "reasoning.encrypted_content" in params["include"]
assert "file_search_call.results" in params["include"]
def test_openai_responses_api_auto_chain_reasoning_no_duplicate_include():
"""Test that reasoning.encrypted_content is not duplicated if already in include."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
auto_chain_reasoning=True,
include=["reasoning.encrypted_content"],
)
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
assert "include" in params
# Should only appear once
assert params["include"].count("reasoning.encrypted_content") == 1
def test_openai_responses_api_auto_chain_reasoning_prepends_to_input():
"""Test that stored reasoning items are prepended to input."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
auto_chain_reasoning=True,
)
# Simulate stored reasoning items
mock_reasoning = MagicMock()
mock_reasoning.type = "reasoning"
mock_reasoning.id = "rs_test_123"
llm._last_reasoning_items = [mock_reasoning]
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
# Input should have reasoning item first, then the message
assert len(params["input"]) == 2
assert params["input"][0] == mock_reasoning
assert params["input"][1]["role"] == "user"
def test_openai_responses_api_auto_chain_reasoning_disabled_no_include():
"""Test that reasoning.encrypted_content is not added when auto_chain_reasoning is False."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
auto_chain_reasoning=False,
)
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
# Should not have include at all (unless explicitly set)
assert "include" not in params or "reasoning.encrypted_content" not in params.get("include", [])
def test_openai_responses_api_auto_chain_reasoning_disabled_no_prepend():
"""Test that reasoning items are not prepended when auto_chain_reasoning is False."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
auto_chain_reasoning=False,
)
# Even with stored reasoning items, they should not be prepended
mock_reasoning = MagicMock()
mock_reasoning.type = "reasoning"
llm._last_reasoning_items = [mock_reasoning]
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
# Input should only have the message, not the reasoning item
assert len(params["input"]) == 1
assert params["input"][0]["role"] == "user"
def test_openai_responses_api_both_auto_chains_work_together():
"""Test that auto_chain and auto_chain_reasoning can be used together."""
llm = OpenAICompletion(
model="gpt-4o",
api="responses",
auto_chain=True,
auto_chain_reasoning=True,
)
assert llm.auto_chain is True
assert llm.auto_chain_reasoning is True
assert llm._last_response_id is None
assert llm._last_reasoning_items is None
# Set both internal values
llm._last_response_id = "resp_123"
mock_reasoning = MagicMock()
mock_reasoning.type = "reasoning"
llm._last_reasoning_items = [mock_reasoning]
params = llm._prepare_responses_params(messages=[{"role": "user", "content": "test"}])
# Both should be applied
assert params.get("previous_response_id") == "resp_123"
assert "reasoning.encrypted_content" in params["include"]
assert len(params["input"]) == 2 # Reasoning item + message