mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 15:48:29 +00:00
* KISS: Refactor LiteAgent integration in flows to use Agents instead. Update documentation and examples to reflect changes in class usage, including async support and structured output handling. Enhance tests for Agent functionality and ensure compatibility with new features. * lint fix * dropped for clarity
258 lines
9.4 KiB
Python
258 lines
9.4 KiB
Python
import asyncio
|
|
from typing import cast
|
|
|
|
import pytest
|
|
from pydantic import BaseModel, Field
|
|
|
|
from crewai import LLM, Agent
|
|
from crewai.lite_agent import LiteAgent, LiteAgentOutput
|
|
from crewai.tools import BaseTool
|
|
from crewai.utilities.events import crewai_event_bus
|
|
from crewai.utilities.events.tool_usage_events import ToolUsageStartedEvent
|
|
|
|
|
|
# A simple test tool
|
|
class SecretLookupTool(BaseTool):
|
|
name: str = "secret_lookup"
|
|
description: str = "A tool to lookup secrets"
|
|
|
|
def _run(self) -> str:
|
|
return "SUPERSECRETPASSWORD123"
|
|
|
|
|
|
# Define Mock Search Tool
|
|
class WebSearchTool(BaseTool):
|
|
"""Tool for searching the web for information."""
|
|
|
|
name: str = "search_web"
|
|
description: str = "Search the web for information about a topic."
|
|
|
|
def _run(self, query: str) -> str:
|
|
"""Search the web for information about a topic."""
|
|
# This is a mock implementation
|
|
if "tokyo" in query.lower():
|
|
return "Tokyo's population in 2023 was approximately 21 million people in the city proper, and 37 million in the greater metropolitan area."
|
|
elif "climate change" in query.lower() and "coral" in query.lower():
|
|
return "Climate change severely impacts coral reefs through: 1) Ocean warming causing coral bleaching, 2) Ocean acidification reducing calcification, 3) Sea level rise affecting light availability, 4) Increased storm frequency damaging reef structures. Sources: NOAA Coral Reef Conservation Program, Global Coral Reef Alliance."
|
|
else:
|
|
return f"Found information about {query}: This is a simulated search result for demonstration purposes."
|
|
|
|
|
|
# Define Mock Calculator Tool
|
|
class CalculatorTool(BaseTool):
|
|
"""Tool for performing calculations."""
|
|
|
|
name: str = "calculate"
|
|
description: str = "Calculate the result of a mathematical expression."
|
|
|
|
def _run(self, expression: str) -> str:
|
|
"""Calculate the result of a mathematical expression."""
|
|
try:
|
|
result = eval(expression, {"__builtins__": {}})
|
|
return f"The result of {expression} is {result}"
|
|
except Exception as e:
|
|
return f"Error calculating {expression}: {str(e)}"
|
|
|
|
|
|
# Define a custom response format using Pydantic
|
|
class ResearchResult(BaseModel):
|
|
"""Structure for research results."""
|
|
|
|
main_findings: str = Field(description="The main findings from the research")
|
|
key_points: list[str] = Field(description="List of key points")
|
|
sources: list[str] = Field(description="List of sources used")
|
|
|
|
|
|
@pytest.mark.vcr(filter_headers=["authorization"])
|
|
@pytest.mark.parametrize("verbose", [True, False])
|
|
def test_lite_agent_created_with_correct_parameters(monkeypatch, verbose):
|
|
"""Test that LiteAgent is created with the correct parameters when Agent.kickoff() is called."""
|
|
# Create a test agent with specific parameters
|
|
llm = LLM(model="gpt-4o-mini")
|
|
custom_tools = [WebSearchTool(), CalculatorTool()]
|
|
max_iter = 10
|
|
max_execution_time = 300
|
|
|
|
agent = Agent(
|
|
role="Test Agent",
|
|
goal="Test Goal",
|
|
backstory="Test Backstory",
|
|
llm=llm,
|
|
tools=custom_tools,
|
|
max_iter=max_iter,
|
|
max_execution_time=max_execution_time,
|
|
verbose=verbose,
|
|
)
|
|
|
|
# Create a mock to capture the created LiteAgent
|
|
created_lite_agent = None
|
|
original_lite_agent = LiteAgent
|
|
|
|
# Define a mock LiteAgent class that captures its arguments
|
|
class MockLiteAgent(original_lite_agent):
|
|
def __init__(self, **kwargs):
|
|
nonlocal created_lite_agent
|
|
created_lite_agent = kwargs
|
|
super().__init__(**kwargs)
|
|
|
|
# Patch the LiteAgent class
|
|
monkeypatch.setattr("crewai.agent.LiteAgent", MockLiteAgent)
|
|
|
|
# Call kickoff to create the LiteAgent
|
|
agent.kickoff("Test query")
|
|
|
|
# Verify all parameters were passed correctly
|
|
assert created_lite_agent is not None
|
|
assert created_lite_agent["role"] == "Test Agent"
|
|
assert created_lite_agent["goal"] == "Test Goal"
|
|
assert created_lite_agent["backstory"] == "Test Backstory"
|
|
assert created_lite_agent["llm"] == llm
|
|
assert len(created_lite_agent["tools"]) == 2
|
|
assert isinstance(created_lite_agent["tools"][0], WebSearchTool)
|
|
assert isinstance(created_lite_agent["tools"][1], CalculatorTool)
|
|
assert created_lite_agent["max_iterations"] == max_iter
|
|
assert created_lite_agent["max_execution_time"] == max_execution_time
|
|
assert created_lite_agent["verbose"] == verbose
|
|
assert created_lite_agent["response_format"] is None
|
|
|
|
# Test with a response_format
|
|
monkeypatch.setattr("crewai.agent.LiteAgent", MockLiteAgent)
|
|
|
|
class TestResponse(BaseModel):
|
|
test_field: str
|
|
|
|
agent.kickoff("Test query", response_format=TestResponse)
|
|
assert created_lite_agent["response_format"] == TestResponse
|
|
|
|
|
|
@pytest.mark.vcr(filter_headers=["authorization"])
|
|
def test_lite_agent_with_tools():
|
|
"""Test that Agent can use tools."""
|
|
# Create a LiteAgent with tools
|
|
llm = LLM(model="gpt-4o-mini")
|
|
agent = Agent(
|
|
role="Research Assistant",
|
|
goal="Find information about the population of Tokyo",
|
|
backstory="You are a helpful research assistant who can search for information about the population of Tokyo.",
|
|
llm=llm,
|
|
tools=[WebSearchTool()],
|
|
verbose=True,
|
|
)
|
|
|
|
result = agent.kickoff(
|
|
"What is the population of Tokyo and how many people would that be per square kilometer if Tokyo's area is 2,194 square kilometers?"
|
|
)
|
|
|
|
assert (
|
|
"21 million" in result.raw or "37 million" in result.raw
|
|
), "Agent should find Tokyo's population"
|
|
assert (
|
|
"per square kilometer" in result.raw
|
|
), "Agent should calculate population density"
|
|
|
|
received_events = []
|
|
|
|
@crewai_event_bus.on(ToolUsageStartedEvent)
|
|
def event_handler(source, event):
|
|
received_events.append(event)
|
|
|
|
agent.kickoff("What are the effects of climate change on coral reefs?")
|
|
|
|
# Verify tool usage events were emitted
|
|
assert len(received_events) > 0, "Tool usage events should be emitted"
|
|
event = received_events[0]
|
|
assert isinstance(event, ToolUsageStartedEvent)
|
|
assert event.agent_role == "Research Assistant"
|
|
assert event.tool_name == "search_web"
|
|
|
|
|
|
@pytest.mark.vcr(filter_headers=["authorization"])
|
|
def test_lite_agent_structured_output():
|
|
"""Test that Agent can return a simple structured output."""
|
|
|
|
class SimpleOutput(BaseModel):
|
|
"""Simple structure for agent outputs."""
|
|
|
|
summary: str = Field(description="A brief summary of findings")
|
|
confidence: int = Field(description="Confidence level from 1-100")
|
|
|
|
web_search_tool = WebSearchTool()
|
|
|
|
llm = LLM(model="gpt-4o-mini")
|
|
agent = Agent(
|
|
role="Info Gatherer",
|
|
goal="Provide brief information",
|
|
backstory="You gather and summarize information quickly.",
|
|
llm=llm,
|
|
tools=[web_search_tool],
|
|
verbose=True,
|
|
)
|
|
|
|
result = agent.kickoff(
|
|
"What is the population of Tokyo? Return your strucutred output in JSON format with the following fields: summary, confidence",
|
|
response_format=SimpleOutput,
|
|
)
|
|
|
|
print(f"\n=== Agent Result Type: {type(result)}")
|
|
print(f"=== Agent Result: {result}")
|
|
print(f"=== Pydantic: {result.pydantic}")
|
|
|
|
assert result.pydantic is not None, "Should return a Pydantic model"
|
|
|
|
output = cast(SimpleOutput, result.pydantic)
|
|
|
|
assert isinstance(output.summary, str), "Summary should be a string"
|
|
assert len(output.summary) > 0, "Summary should not be empty"
|
|
assert isinstance(output.confidence, int), "Confidence should be an integer"
|
|
assert 1 <= output.confidence <= 100, "Confidence should be between 1 and 100"
|
|
|
|
assert "tokyo" in output.summary.lower() or "population" in output.summary.lower()
|
|
|
|
assert result.usage_metrics is not None
|
|
|
|
return result
|
|
|
|
|
|
@pytest.mark.vcr(filter_headers=["authorization"])
|
|
def test_lite_agent_returns_usage_metrics():
|
|
"""Test that LiteAgent returns usage metrics."""
|
|
llm = LLM(model="gpt-4o-mini")
|
|
agent = Agent(
|
|
role="Research Assistant",
|
|
goal="Find information about the population of Tokyo",
|
|
backstory="You are a helpful research assistant who can search for information about the population of Tokyo.",
|
|
llm=llm,
|
|
tools=[WebSearchTool()],
|
|
verbose=True,
|
|
)
|
|
|
|
result = agent.kickoff(
|
|
"What is the population of Tokyo? Return your strucutred output in JSON format with the following fields: summary, confidence"
|
|
)
|
|
|
|
assert result.usage_metrics is not None
|
|
assert result.usage_metrics["total_tokens"] > 0
|
|
|
|
|
|
@pytest.mark.vcr(filter_headers=["authorization"])
|
|
@pytest.mark.asyncio
|
|
async def test_lite_agent_returns_usage_metrics_async():
|
|
"""Test that LiteAgent returns usage metrics when run asynchronously."""
|
|
llm = LLM(model="gpt-4o-mini")
|
|
agent = Agent(
|
|
role="Research Assistant",
|
|
goal="Find information about the population of Tokyo",
|
|
backstory="You are a helpful research assistant who can search for information about the population of Tokyo.",
|
|
llm=llm,
|
|
tools=[WebSearchTool()],
|
|
verbose=True,
|
|
)
|
|
|
|
result = await agent.kickoff_async(
|
|
"What is the population of Tokyo? Return your strucutred output in JSON format with the following fields: summary, confidence"
|
|
)
|
|
assert isinstance(result, LiteAgentOutput)
|
|
assert "21 million" in result.raw or "37 million" in result.raw
|
|
assert result.usage_metrics is not None
|
|
assert result.usage_metrics["total_tokens"] > 0
|