Files
crewAI/src/crewai/knowledge/source/base_knowledge_source.py
Lorenze Jay b3185ad90c Feat/docling-support (#1763)
* added tool for docling support

* docling support installation

* use file_paths instead of file_path

* fix import

* organized imports

* run_type docs

* needs to be list

* fixed logic

* logged but file_path is backwards compatible

* use file_paths instead of file_path 2

* added test for multiple sources for file_paths

* fix run-types

* enabling local files to work and type cleanup

* linted

* fix test and types

* fixed run types

* fix types

* renamed to CrewDoclingSource

* linted

* added docs

* resolve conflicts

---------

Co-authored-by: Brandon Hancock (bhancock_ai) <109994880+bhancockio@users.noreply.github.com>
Co-authored-by: Brandon Hancock <brandon@brandonhancock.io>
2024-12-23 13:19:58 -05:00

50 lines
1.6 KiB
Python

from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional
import numpy as np
from pydantic import BaseModel, ConfigDict, Field
from crewai.knowledge.storage.knowledge_storage import KnowledgeStorage
class BaseKnowledgeSource(BaseModel, ABC):
"""Abstract base class for knowledge sources."""
chunk_size: int = 4000
chunk_overlap: int = 200
chunks: List[str] = Field(default_factory=list)
chunk_embeddings: List[np.ndarray] = Field(default_factory=list)
model_config = ConfigDict(arbitrary_types_allowed=True)
storage: KnowledgeStorage = Field(default_factory=KnowledgeStorage)
metadata: Dict[str, Any] = Field(default_factory=dict) # Currently unused
collection_name: Optional[str] = Field(default=None)
@abstractmethod
def validate_content(self) -> Any:
"""Load and preprocess content from the source."""
pass
@abstractmethod
def add(self) -> None:
"""Process content, chunk it, compute embeddings, and save them."""
pass
def get_embeddings(self) -> List[np.ndarray]:
"""Return the list of embeddings for the chunks."""
return self.chunk_embeddings
def _chunk_text(self, text: str) -> List[str]:
"""Utility method to split text into chunks."""
return [
text[i : i + self.chunk_size]
for i in range(0, len(text), self.chunk_size - self.chunk_overlap)
]
def _save_documents(self):
"""
Save the documents to the storage.
This method should be called after the chunks and embeddings are generated.
"""
self.storage.save(self.chunks)