mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-07 15:18:29 +00:00
41 lines
1.4 KiB
Python
41 lines
1.4 KiB
Python
from typing import Type, get_args, get_origin
|
|
|
|
from pydantic import BaseModel
|
|
|
|
|
|
class PydanticSchemaParser(BaseModel):
|
|
model: Type[BaseModel]
|
|
|
|
def get_schema(self) -> str:
|
|
"""
|
|
Public method to get the schema of a Pydantic model.
|
|
|
|
:param model: The Pydantic model class to generate schema for.
|
|
:return: String representation of the model schema.
|
|
"""
|
|
return self._get_model_schema(self.model)
|
|
|
|
def _get_model_schema(self, model, depth=0) -> str:
|
|
lines = []
|
|
for field_name, field in model.model_fields.items():
|
|
field_type_str = self._get_field_type(field, depth + 1)
|
|
lines.append(f"{' ' * 4 * depth}- {field_name}: {field_type_str}")
|
|
|
|
return "\n".join(lines)
|
|
|
|
def _get_field_type(self, field, depth) -> str:
|
|
field_type = field.annotation
|
|
if get_origin(field_type) is list:
|
|
list_item_type = get_args(field_type)[0]
|
|
if isinstance(list_item_type, type) and issubclass(
|
|
list_item_type, BaseModel
|
|
):
|
|
nested_schema = self._get_model_schema(list_item_type, depth + 1)
|
|
return f"List[\n{nested_schema}\n{' ' * 4 * depth}]"
|
|
else:
|
|
return f"List[{list_item_type.__name__}]"
|
|
elif issubclass(field_type, BaseModel):
|
|
return f"\n{self._get_model_schema(field_type, depth)}"
|
|
else:
|
|
return field_type.__name__
|