Files
crewAI/tests/pipeline/test_pipeline.py
Brandon Hancock d094e178f1 Update terminology
2024-07-18 14:59:38 -04:00

200 lines
6.2 KiB
Python

from unittest.mock import MagicMock
import pytest
from crewai.agent import Agent
from crewai.crew import Crew
from crewai.crews.crew_output import CrewOutput
from crewai.pipeline.pipeline import Pipeline
from crewai.process import Process
from crewai.task import Task
from crewai.tasks.task_output import TaskOutput
@pytest.fixture
def mock_crew_factory():
def _create_mock_crew(output_json_dict=None):
crew = MagicMock(spec=Crew)
task_output = TaskOutput(
description="Test task", raw="Task output", agent="Test Agent"
)
crew_output = CrewOutput(
raw="Test output",
tasks_output=[task_output],
token_usage={
"total_tokens": 100,
"prompt_tokens": 50,
"completion_tokens": 50,
},
json_dict=output_json_dict if output_json_dict else {"key": "value"},
)
async def async_kickoff(inputs=None):
print("inputs in async_kickoff", inputs)
return crew_output
crew.kickoff_async.side_effect = async_kickoff
# Add more attributes that Procedure might be expecting
crew.verbose = False
crew.output_log_file = None
crew.max_rpm = None
crew.memory = False
crew.process = Process.sequential
crew.config = None
crew.cache = True
# Add non-empty agents and tasks
mock_agent = MagicMock(spec=Agent)
mock_task = MagicMock(spec=Task)
mock_task.agent = mock_agent
mock_task.async_execution = False
mock_task.context = None
crew.agents = [mock_agent]
crew.tasks = [mock_task]
return crew
return _create_mock_crew
def test_pipeline_initialization(mock_crew_factory):
"""
Test that a Pipeline is correctly initialized with the given stages.
"""
crew1 = mock_crew_factory()
crew2 = mock_crew_factory()
pipeline = Pipeline(stages=[crew1, crew2])
assert len(pipeline.stages) == 2
assert pipeline.stages[0] == crew1
assert pipeline.stages[1] == crew2
@pytest.mark.asyncio
async def test_pipeline_process_streams_single_input(mock_crew_factory):
"""
Test that Pipeline.process_streams() correctly processes a single input
and returns the expected CrewOutput.
"""
mock_crew = mock_crew_factory()
pipeline = Pipeline(stages=[mock_crew])
input_data = [{"key": "value"}]
pipeline_result = await pipeline.process_runs(input_data)
mock_crew.kickoff_async.assert_called_once_with(inputs={"key": "value"})
for stream_result in pipeline_result:
assert isinstance(stream_result[0], CrewOutput)
assert stream_result[0].raw == "Test output"
assert len(stream_result[0].tasks_output) == 1
assert stream_result[0].tasks_output[0].raw == "Task output"
assert stream_result[0].token_usage == {
"total_tokens": 100,
"prompt_tokens": 50,
"completion_tokens": 50,
}
@pytest.mark.asyncio
async def test_pipeline_process_streams_multiple_inputs(mock_crew_factory):
"""
Test that Pipeline.process_streams() correctly processes multiple inputs
and returns the expected CrewOutputs.
"""
mock_crew = mock_crew_factory()
pipeline = Pipeline(stages=[mock_crew])
input_data = [{"key1": "value1"}, {"key2": "value2"}]
pipeline_result = await pipeline.process_runs(input_data)
assert mock_crew.kickoff_async.call_count == 2
assert len(pipeline_result) == 2
for run_result in pipeline_result:
assert all(isinstance(run_output, CrewOutput) for run_output in run_result)
@pytest.mark.asyncio
async def test_pipeline_with_parallel_stages(mock_crew_factory):
"""
Test that Pipeline correctly handles parallel stages.
"""
crew1 = mock_crew_factory()
crew2 = mock_crew_factory()
crew3 = mock_crew_factory()
pipeline = Pipeline(stages=[crew1, [crew2, crew3]])
input_data = [{"initial": "data"}]
pipeline_result = await pipeline.process_runs(input_data)
crew1.kickoff_async.assert_called_once_with(
inputs={"initial": "data", "key": "value"}
)
crew2.kickoff_async.assert_called_once_with(
inputs={"initial": "data", "key": "value"}
)
crew3.kickoff_async.assert_called_once_with(
inputs={"initial": "data", "key": "value"}
)
assert len(pipeline_result) == 1
for stage_result in pipeline_result:
assert isinstance(stage_result[0], CrewOutput)
def test_pipeline_rshift_operator(mock_crew_factory):
"""
Test that the >> operator correctly creates a Pipeline from Crews and lists of Crews.
"""
crew1 = mock_crew_factory()
crew2 = mock_crew_factory()
crew3 = mock_crew_factory()
# Test single crew addition
pipeline = Pipeline(stages=[]) >> crew1
assert len(pipeline.stages) == 1
assert pipeline.stages[0] == crew1
# Test adding a list of crews
pipeline = Pipeline(stages=[crew1])
pipeline = pipeline >> [crew2, crew3]
print("pipeline.stages:", pipeline.stages)
assert len(pipeline.stages) == 2
assert pipeline.stages[1] == [crew2, crew3]
# Test error case: trying to shift with non-Crew object
with pytest.raises(TypeError):
pipeline >> "not a crew"
"""
TODO: Figure out what is the proper output for a pipeline with multiple stages
Options:
- Should the final output only include the last stage's output?
- Should the final output include the accumulation of previous stages' outputs?
"""
@pytest.mark.asyncio
async def test_pipeline_data_accumulation(mock_crew_factory):
"""
Test that data is correctly accumulated through the pipeline stages.
"""
crew1 = mock_crew_factory(output_json_dict={"key1": "value1"})
crew2 = mock_crew_factory(output_json_dict={"key2": "value2"})
pipeline = Pipeline(stages=[crew1, crew2])
input_data = [{"initial": "data"}]
pipeline_result = await pipeline.process_runs(input_data)
assert len(pipeline_result) == 1
print("RESULT: ", pipeline_result)
for run_result in pipeline_result:
print("RUN RESULT: ", run_result)
assert run_result[0].json_dict == {
"initial": "data",
"key1": "value1",
"key2": "value2",
}