Files
crewAI/crewai_tools/tools/rag/rag_tool.py
Greyson LaLonde c960f26601 Squashed 'packages/tools/' changes from 78317b9c..0b3f00e6
0b3f00e6 chore: update project version to 0.73.0 and revise uv.lock dependencies (#455)
ad19b074 feat: replace embedchain with native crewai adapter (#451)

git-subtree-dir: packages/tools
git-subtree-split: 0b3f00e67c0dae24d188c292dc99759fd1c841f7
2025-09-18 23:38:08 -04:00

210 lines
7.2 KiB
Python

import os
from abc import ABC, abstractmethod
from typing import Any, cast
from crewai.rag.embeddings.factory import get_embedding_function
from crewai.tools import BaseTool
from pydantic import BaseModel, ConfigDict, Field, model_validator
class Adapter(BaseModel, ABC):
model_config = ConfigDict(arbitrary_types_allowed=True)
@abstractmethod
def query(
self,
question: str,
similarity_threshold: float | None = None,
limit: int | None = None,
) -> str:
"""Query the knowledge base with a question and return the answer."""
@abstractmethod
def add(
self,
*args: Any,
**kwargs: Any,
) -> None:
"""Add content to the knowledge base."""
class RagTool(BaseTool):
class _AdapterPlaceholder(Adapter):
def query(
self,
question: str,
similarity_threshold: float | None = None,
limit: int | None = None,
) -> str:
raise NotImplementedError
def add(self, *args: Any, **kwargs: Any) -> None:
raise NotImplementedError
name: str = "Knowledge base"
description: str = "A knowledge base that can be used to answer questions."
summarize: bool = False
similarity_threshold: float = 0.6
limit: int = 5
adapter: Adapter = Field(default_factory=_AdapterPlaceholder)
config: Any | None = None
@model_validator(mode="after")
def _set_default_adapter(self):
if isinstance(self.adapter, RagTool._AdapterPlaceholder):
from crewai_tools.adapters.crewai_rag_adapter import CrewAIRagAdapter
parsed_config = self._parse_config(self.config)
self.adapter = CrewAIRagAdapter(
collection_name="rag_tool_collection",
summarize=self.summarize,
similarity_threshold=self.similarity_threshold,
limit=self.limit,
config=parsed_config,
)
return self
def _parse_config(self, config: Any) -> Any:
"""Parse complex config format to extract provider-specific config.
Raises:
ValueError: If the config format is invalid or uses unsupported providers.
"""
if config is None:
return None
if isinstance(config, dict) and "provider" in config:
return config
if isinstance(config, dict):
if "vectordb" in config:
vectordb_config = config["vectordb"]
if isinstance(vectordb_config, dict) and "provider" in vectordb_config:
provider = vectordb_config["provider"]
provider_config = vectordb_config.get("config", {})
supported_providers = ["chromadb", "qdrant"]
if provider not in supported_providers:
raise ValueError(
f"Unsupported vector database provider: '{provider}'. "
f"CrewAI RAG currently supports: {', '.join(supported_providers)}."
)
embedding_config = config.get("embedding_model")
embedding_function = None
if embedding_config and isinstance(embedding_config, dict):
embedding_function = self._create_embedding_function(
embedding_config, provider
)
return self._create_provider_config(
provider, provider_config, embedding_function
)
else:
return None
else:
embedding_config = config.get("embedding_model")
embedding_function = None
if embedding_config and isinstance(embedding_config, dict):
embedding_function = self._create_embedding_function(
embedding_config, "chromadb"
)
return self._create_provider_config("chromadb", {}, embedding_function)
return config
@staticmethod
def _create_embedding_function(embedding_config: dict, provider: str) -> Any:
"""Create embedding function for the specified vector database provider."""
embedding_provider = embedding_config.get("provider")
embedding_model_config = embedding_config.get("config", {}).copy()
if "model" in embedding_model_config:
embedding_model_config["model_name"] = embedding_model_config.pop("model")
factory_config = {"provider": embedding_provider, **embedding_model_config}
if embedding_provider == "openai" and "api_key" not in factory_config:
api_key = os.getenv("OPENAI_API_KEY")
if api_key:
factory_config["api_key"] = api_key
print(f"Creating embedding function with config: {factory_config}")
if provider == "chromadb":
embedding_func = get_embedding_function(factory_config)
print(f"Created embedding function: {embedding_func}")
print(f"Embedding function type: {type(embedding_func)}")
return embedding_func
elif provider == "qdrant":
chromadb_func = get_embedding_function(factory_config)
def qdrant_embed_fn(text: str) -> list[float]:
"""Embed text using ChromaDB function and convert to list of floats for Qdrant.
Args:
text: The input text to embed.
Returns:
A list of floats representing the embedding.
"""
embeddings = chromadb_func([text])
return embeddings[0] if embeddings and len(embeddings) > 0 else []
return cast(Any, qdrant_embed_fn)
return None
@staticmethod
def _create_provider_config(
provider: str, provider_config: dict, embedding_function: Any
) -> Any:
"""Create proper provider config object."""
if provider == "chromadb":
from crewai.rag.chromadb.config import ChromaDBConfig
config_kwargs = {}
if embedding_function:
config_kwargs["embedding_function"] = embedding_function
config_kwargs.update(provider_config)
return ChromaDBConfig(**config_kwargs)
elif provider == "qdrant":
from crewai.rag.qdrant.config import QdrantConfig
config_kwargs = {}
if embedding_function:
config_kwargs["embedding_function"] = embedding_function
config_kwargs.update(provider_config)
return QdrantConfig(**config_kwargs)
return None
def add(
self,
*args: Any,
**kwargs: Any,
) -> None:
self.adapter.add(*args, **kwargs)
def _run(
self,
query: str,
similarity_threshold: float | None = None,
limit: int | None = None,
) -> str:
threshold = (
similarity_threshold
if similarity_threshold is not None
else self.similarity_threshold
)
result_limit = limit if limit is not None else self.limit
return f"Relevant Content:\n{self.adapter.query(query, similarity_threshold=threshold, limit=result_limit)}"