mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 15:48:29 +00:00
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
* Enhance knowledge management in CrewAI - Added `KnowledgeConfig` class to configure knowledge retrieval parameters such as `limit` and `score_threshold`. - Updated `Agent` and `Crew` classes to utilize the new knowledge configuration for querying knowledge sources. - Enhanced documentation to clarify the addition of knowledge sources at both agent and crew levels. - Introduced new tips in documentation to guide users on knowledge source management and configuration. * Refactor knowledge configuration parameters in CrewAI - Renamed `limit` to `results_limit` in `KnowledgeConfig`, `query_knowledge`, and `query` methods for consistency and clarity. - Updated related documentation to reflect the new parameter name, ensuring users understand the configuration options for knowledge retrieval. * Refactor agent tests to utilize mock knowledge storage - Updated test cases in `agent_test.py` to use `KnowledgeStorage` for mocking knowledge sources, enhancing test reliability and clarity. - Renamed `limit` to `results_limit` in `KnowledgeConfig` for consistency with recent changes. - Ensured that knowledge queries are properly mocked to return expected results during tests. * Add VCR support for agent tests with query limits and score thresholds - Introduced `@pytest.mark.vcr` decorator in `agent_test.py` for tests involving knowledge sources, ensuring consistent recording of HTTP interactions. - Added new YAML cassette files for `test_agent_with_knowledge_sources_with_query_limit_and_score_threshold` and `test_agent_with_knowledge_sources_with_query_limit_and_score_threshold_default`, capturing the expected API responses for these tests. - Enhanced test reliability by utilizing VCR to manage external API calls during testing. * Update documentation to format parameter names in code style - Changed the formatting of `results_limit` and `score_threshold` in the documentation to use code style for better clarity and emphasis. - Ensured consistency in documentation presentation to enhance user understanding of configuration options. * Enhance KnowledgeConfig with field descriptions - Updated `results_limit` and `score_threshold` in `KnowledgeConfig` to use Pydantic's `Field` for improved documentation and clarity. - Added descriptions to both parameters to provide better context for their usage in knowledge retrieval configuration. * docstrings added
204 lines
7.1 KiB
Python
204 lines
7.1 KiB
Python
import contextlib
|
|
import hashlib
|
|
import io
|
|
import logging
|
|
import os
|
|
import shutil
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
import chromadb
|
|
import chromadb.errors
|
|
from chromadb.api import ClientAPI
|
|
from chromadb.api.types import OneOrMany
|
|
from chromadb.config import Settings
|
|
|
|
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
|
|
from crewai.utilities import EmbeddingConfigurator
|
|
from crewai.utilities.chromadb import sanitize_collection_name
|
|
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
|
|
from crewai.utilities.logger import Logger
|
|
from crewai.utilities.paths import db_storage_path
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def suppress_logging(
|
|
logger_name="chromadb.segment.impl.vector.local_persistent_hnsw",
|
|
level=logging.ERROR,
|
|
):
|
|
logger = logging.getLogger(logger_name)
|
|
original_level = logger.getEffectiveLevel()
|
|
logger.setLevel(level)
|
|
with (
|
|
contextlib.redirect_stdout(io.StringIO()),
|
|
contextlib.redirect_stderr(io.StringIO()),
|
|
contextlib.suppress(UserWarning),
|
|
):
|
|
yield
|
|
logger.setLevel(original_level)
|
|
|
|
|
|
class KnowledgeStorage(BaseKnowledgeStorage):
|
|
"""
|
|
Extends Storage to handle embeddings for memory entries, improving
|
|
search efficiency.
|
|
"""
|
|
|
|
collection: Optional[chromadb.Collection] = None
|
|
collection_name: Optional[str] = "knowledge"
|
|
app: Optional[ClientAPI] = None
|
|
|
|
def __init__(
|
|
self,
|
|
embedder: Optional[Dict[str, Any]] = None,
|
|
collection_name: Optional[str] = None,
|
|
):
|
|
self.collection_name = collection_name
|
|
self._set_embedder_config(embedder)
|
|
|
|
def search(
|
|
self,
|
|
query: List[str],
|
|
limit: int = 3,
|
|
filter: Optional[dict] = None,
|
|
score_threshold: float = 0.35,
|
|
) -> List[Dict[str, Any]]:
|
|
with suppress_logging():
|
|
if self.collection:
|
|
fetched = self.collection.query(
|
|
query_texts=query,
|
|
n_results=limit,
|
|
where=filter,
|
|
)
|
|
results = []
|
|
for i in range(len(fetched["ids"][0])): # type: ignore
|
|
result = {
|
|
"id": fetched["ids"][0][i], # type: ignore
|
|
"metadata": fetched["metadatas"][0][i], # type: ignore
|
|
"context": fetched["documents"][0][i], # type: ignore
|
|
"score": fetched["distances"][0][i], # type: ignore
|
|
}
|
|
if result["score"] >= score_threshold:
|
|
results.append(result)
|
|
return results
|
|
else:
|
|
raise Exception("Collection not initialized")
|
|
|
|
def initialize_knowledge_storage(self):
|
|
base_path = os.path.join(db_storage_path(), "knowledge")
|
|
chroma_client = chromadb.PersistentClient(
|
|
path=base_path,
|
|
settings=Settings(allow_reset=True),
|
|
)
|
|
|
|
self.app = chroma_client
|
|
|
|
try:
|
|
collection_name = (
|
|
f"knowledge_{self.collection_name}"
|
|
if self.collection_name
|
|
else "knowledge"
|
|
)
|
|
if self.app:
|
|
self.collection = self.app.get_or_create_collection(
|
|
name=sanitize_collection_name(collection_name),
|
|
embedding_function=self.embedder,
|
|
)
|
|
else:
|
|
raise Exception("Vector Database Client not initialized")
|
|
except Exception:
|
|
raise Exception("Failed to create or get collection")
|
|
|
|
def reset(self):
|
|
base_path = os.path.join(db_storage_path(), KNOWLEDGE_DIRECTORY)
|
|
if not self.app:
|
|
self.app = chromadb.PersistentClient(
|
|
path=base_path,
|
|
settings=Settings(allow_reset=True),
|
|
)
|
|
|
|
self.app.reset()
|
|
shutil.rmtree(base_path)
|
|
self.app = None
|
|
self.collection = None
|
|
|
|
def save(
|
|
self,
|
|
documents: List[str],
|
|
metadata: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None,
|
|
):
|
|
if not self.collection:
|
|
raise Exception("Collection not initialized")
|
|
|
|
try:
|
|
# Create a dictionary to store unique documents
|
|
unique_docs = {}
|
|
|
|
# Generate IDs and create a mapping of id -> (document, metadata)
|
|
for idx, doc in enumerate(documents):
|
|
doc_id = hashlib.sha256(doc.encode("utf-8")).hexdigest()
|
|
doc_metadata = None
|
|
if metadata is not None:
|
|
if isinstance(metadata, list):
|
|
doc_metadata = metadata[idx]
|
|
else:
|
|
doc_metadata = metadata
|
|
unique_docs[doc_id] = (doc, doc_metadata)
|
|
|
|
# Prepare filtered lists for ChromaDB
|
|
filtered_docs = []
|
|
filtered_metadata = []
|
|
filtered_ids = []
|
|
|
|
# Build the filtered lists
|
|
for doc_id, (doc, meta) in unique_docs.items():
|
|
filtered_docs.append(doc)
|
|
filtered_metadata.append(meta)
|
|
filtered_ids.append(doc_id)
|
|
|
|
# If we have no metadata at all, set it to None
|
|
final_metadata: Optional[OneOrMany[chromadb.Metadata]] = (
|
|
None if all(m is None for m in filtered_metadata) else filtered_metadata
|
|
)
|
|
|
|
self.collection.upsert(
|
|
documents=filtered_docs,
|
|
metadatas=final_metadata,
|
|
ids=filtered_ids,
|
|
)
|
|
except chromadb.errors.InvalidDimensionException as e:
|
|
Logger(verbose=True).log(
|
|
"error",
|
|
"Embedding dimension mismatch. This usually happens when mixing different embedding models. Try resetting the collection using `crewai reset-memories -a`",
|
|
"red",
|
|
)
|
|
raise ValueError(
|
|
"Embedding dimension mismatch. Make sure you're using the same embedding model "
|
|
"across all operations with this collection."
|
|
"Try resetting the collection using `crewai reset-memories -a`"
|
|
) from e
|
|
except Exception as e:
|
|
Logger(verbose=True).log("error", f"Failed to upsert documents: {e}", "red")
|
|
raise
|
|
|
|
def _create_default_embedding_function(self):
|
|
from chromadb.utils.embedding_functions.openai_embedding_function import (
|
|
OpenAIEmbeddingFunction,
|
|
)
|
|
|
|
return OpenAIEmbeddingFunction(
|
|
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
|
|
)
|
|
|
|
def _set_embedder_config(self, embedder: Optional[Dict[str, Any]] = None) -> None:
|
|
"""Set the embedding configuration for the knowledge storage.
|
|
|
|
Args:
|
|
embedder_config (Optional[Dict[str, Any]]): Configuration dictionary for the embedder.
|
|
If None or empty, defaults to the default embedding function.
|
|
"""
|
|
self.embedder = (
|
|
EmbeddingConfigurator().configure_embedder(embedder)
|
|
if embedder
|
|
else self._create_default_embedding_function()
|
|
)
|