Files
crewAI/lib/crewai-tools/src/crewai_tools/tools/rag/rag_tool.py
Greyson LaLonde a928cde6ee fix: rag tool embeddings config
* fix: ensure config is not flattened, add tests

* chore: refactor inits to model_validator

* chore: refactor rag tool config parsing

* chore: add initial docs

* chore: add additional validation aliases for provider env vars

* chore: add solid docs

* chore: move imports to top

* fix: revert circular import

* fix: lazy import qdrant-client

* fix: allow collection name config

* chore: narrow model names for google

* chore: update additional docs

* chore: add backward compat on model name aliases

* chore: add tests for config changes
2025-11-24 16:51:28 -05:00

228 lines
7.5 KiB
Python

from abc import ABC, abstractmethod
from typing import Any, Literal, cast
from crewai.rag.core.base_embeddings_callable import EmbeddingFunction
from crewai.rag.embeddings.factory import build_embedder
from crewai.rag.embeddings.types import ProviderSpec
from crewai.tools import BaseTool
from pydantic import (
BaseModel,
ConfigDict,
Field,
TypeAdapter,
ValidationError,
field_validator,
model_validator,
)
from typing_extensions import Self
from crewai_tools.tools.rag.types import RagToolConfig, VectorDbConfig
def _validate_embedding_config(
value: dict[str, Any] | ProviderSpec,
) -> dict[str, Any] | ProviderSpec:
"""Validate embedding config and provide clearer error messages for union validation.
This pre-validator catches Pydantic ValidationErrors from the ProviderSpec union
and provides a cleaner, more focused error message that only shows the relevant
provider's validation errors instead of all 18 union members.
Args:
value: The embedding configuration dictionary or validated ProviderSpec.
Returns:
A validated ProviderSpec instance, or the original value if already validated
or missing required fields.
Raises:
ValueError: If the configuration is invalid for the specified provider.
"""
if not isinstance(value, dict):
return value
provider = value.get("provider")
if not provider:
return value
try:
type_adapter: TypeAdapter[ProviderSpec] = TypeAdapter(ProviderSpec)
return type_adapter.validate_python(value)
except ValidationError as e:
provider_key = f"{provider.lower()}providerspec"
provider_errors = [
err for err in e.errors() if provider_key in str(err.get("loc", "")).lower()
]
if provider_errors:
error_msgs = []
for err in provider_errors:
loc_parts = err["loc"]
if str(loc_parts[0]).lower() == provider_key:
loc_parts = loc_parts[1:]
loc = ".".join(str(x) for x in loc_parts)
error_msgs.append(f" - {loc}: {err['msg']}")
raise ValueError(
f"Invalid configuration for embedding provider '{provider}':\n"
+ "\n".join(error_msgs)
) from e
raise
class Adapter(BaseModel, ABC):
model_config = ConfigDict(arbitrary_types_allowed=True)
@abstractmethod
def query(
self,
question: str,
similarity_threshold: float | None = None,
limit: int | None = None,
) -> str:
"""Query the knowledge base with a question and return the answer."""
@abstractmethod
def add(
self,
*args: Any,
**kwargs: Any,
) -> None:
"""Add content to the knowledge base."""
class RagTool(BaseTool):
class _AdapterPlaceholder(Adapter):
def query(
self,
question: str,
similarity_threshold: float | None = None,
limit: int | None = None,
) -> str:
raise NotImplementedError
def add(self, *args: Any, **kwargs: Any) -> None:
raise NotImplementedError
name: str = "Knowledge base"
description: str = "A knowledge base that can be used to answer questions."
summarize: bool = False
similarity_threshold: float = 0.6
limit: int = 5
collection_name: str = "rag_tool_collection"
adapter: Adapter = Field(default_factory=_AdapterPlaceholder)
config: RagToolConfig = Field(
default_factory=RagToolConfig,
description="Configuration format accepted by RagTool.",
)
@field_validator("config", mode="before")
@classmethod
def _validate_config(cls, value: Any) -> Any:
"""Validate config with improved error messages for embedding providers."""
if not isinstance(value, dict):
return value
embedding_model = value.get("embedding_model")
if embedding_model:
try:
value["embedding_model"] = _validate_embedding_config(embedding_model)
except ValueError:
raise
return value
@model_validator(mode="after")
def _ensure_adapter(self) -> Self:
if isinstance(self.adapter, RagTool._AdapterPlaceholder):
from crewai_tools.adapters.crewai_rag_adapter import CrewAIRagAdapter
provider_cfg = self._parse_config(self.config)
self.adapter = CrewAIRagAdapter(
collection_name=self.collection_name,
summarize=self.summarize,
similarity_threshold=self.similarity_threshold,
limit=self.limit,
config=provider_cfg,
)
return self
def _parse_config(self, config: RagToolConfig) -> Any:
"""Normalize the RagToolConfig into a provider-specific config object.
Defaults to 'chromadb' with no extra provider config if none is supplied.
"""
if not config:
return self._create_provider_config("chromadb", {}, None)
vectordb_cfg = cast(VectorDbConfig, config.get("vectordb", {}))
provider: Literal["chromadb", "qdrant"] = vectordb_cfg.get(
"provider", "chromadb"
)
provider_config: dict[str, Any] = vectordb_cfg.get("config", {})
supported = ("chromadb", "qdrant")
if provider not in supported:
raise ValueError(
f"Unsupported vector database provider: '{provider}'. "
f"CrewAI RAG currently supports: {', '.join(supported)}."
)
embedding_spec: ProviderSpec | None = config.get("embedding_model")
if embedding_spec:
embedding_spec = cast(
ProviderSpec, _validate_embedding_config(embedding_spec)
)
embedding_function = build_embedder(embedding_spec) if embedding_spec else None
return self._create_provider_config(
provider, provider_config, embedding_function
)
@staticmethod
def _create_provider_config(
provider: Literal["chromadb", "qdrant"],
provider_config: dict[str, Any],
embedding_function: EmbeddingFunction[Any] | None,
) -> Any:
"""Instantiate provider config with optional embedding_function injected."""
if provider == "chromadb":
from crewai.rag.chromadb.config import ChromaDBConfig
kwargs = dict(provider_config)
if embedding_function is not None:
kwargs["embedding_function"] = embedding_function
return ChromaDBConfig(**kwargs)
if provider == "qdrant":
from crewai.rag.qdrant.config import QdrantConfig
kwargs = dict(provider_config)
if embedding_function is not None:
kwargs["embedding_function"] = embedding_function
return QdrantConfig(**kwargs)
raise ValueError(f"Unhandled provider: {provider}")
def add(
self,
*args: Any,
**kwargs: Any,
) -> None:
self.adapter.add(*args, **kwargs)
def _run(
self,
query: str,
similarity_threshold: float | None = None,
limit: int | None = None,
) -> str:
threshold = (
similarity_threshold
if similarity_threshold is not None
else self.similarity_threshold
)
result_limit = limit if limit is not None else self.limit
return f"Relevant Content:\n{self.adapter.query(query, similarity_threshold=threshold, limit=result_limit)}"