mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-14 18:48:29 +00:00
* fix: ensure config is not flattened, add tests * chore: refactor inits to model_validator * chore: refactor rag tool config parsing * chore: add initial docs * chore: add additional validation aliases for provider env vars * chore: add solid docs * chore: move imports to top * fix: revert circular import * fix: lazy import qdrant-client * fix: allow collection name config * chore: narrow model names for google * chore: update additional docs * chore: add backward compat on model name aliases * chore: add tests for config changes
228 lines
7.5 KiB
Python
228 lines
7.5 KiB
Python
from abc import ABC, abstractmethod
|
|
from typing import Any, Literal, cast
|
|
|
|
from crewai.rag.core.base_embeddings_callable import EmbeddingFunction
|
|
from crewai.rag.embeddings.factory import build_embedder
|
|
from crewai.rag.embeddings.types import ProviderSpec
|
|
from crewai.tools import BaseTool
|
|
from pydantic import (
|
|
BaseModel,
|
|
ConfigDict,
|
|
Field,
|
|
TypeAdapter,
|
|
ValidationError,
|
|
field_validator,
|
|
model_validator,
|
|
)
|
|
from typing_extensions import Self
|
|
|
|
from crewai_tools.tools.rag.types import RagToolConfig, VectorDbConfig
|
|
|
|
|
|
def _validate_embedding_config(
|
|
value: dict[str, Any] | ProviderSpec,
|
|
) -> dict[str, Any] | ProviderSpec:
|
|
"""Validate embedding config and provide clearer error messages for union validation.
|
|
|
|
This pre-validator catches Pydantic ValidationErrors from the ProviderSpec union
|
|
and provides a cleaner, more focused error message that only shows the relevant
|
|
provider's validation errors instead of all 18 union members.
|
|
|
|
Args:
|
|
value: The embedding configuration dictionary or validated ProviderSpec.
|
|
|
|
Returns:
|
|
A validated ProviderSpec instance, or the original value if already validated
|
|
or missing required fields.
|
|
|
|
Raises:
|
|
ValueError: If the configuration is invalid for the specified provider.
|
|
"""
|
|
if not isinstance(value, dict):
|
|
return value
|
|
|
|
provider = value.get("provider")
|
|
if not provider:
|
|
return value
|
|
|
|
try:
|
|
type_adapter: TypeAdapter[ProviderSpec] = TypeAdapter(ProviderSpec)
|
|
return type_adapter.validate_python(value)
|
|
except ValidationError as e:
|
|
provider_key = f"{provider.lower()}providerspec"
|
|
provider_errors = [
|
|
err for err in e.errors() if provider_key in str(err.get("loc", "")).lower()
|
|
]
|
|
|
|
if provider_errors:
|
|
error_msgs = []
|
|
for err in provider_errors:
|
|
loc_parts = err["loc"]
|
|
if str(loc_parts[0]).lower() == provider_key:
|
|
loc_parts = loc_parts[1:]
|
|
loc = ".".join(str(x) for x in loc_parts)
|
|
error_msgs.append(f" - {loc}: {err['msg']}")
|
|
|
|
raise ValueError(
|
|
f"Invalid configuration for embedding provider '{provider}':\n"
|
|
+ "\n".join(error_msgs)
|
|
) from e
|
|
|
|
raise
|
|
|
|
|
|
class Adapter(BaseModel, ABC):
|
|
model_config = ConfigDict(arbitrary_types_allowed=True)
|
|
|
|
@abstractmethod
|
|
def query(
|
|
self,
|
|
question: str,
|
|
similarity_threshold: float | None = None,
|
|
limit: int | None = None,
|
|
) -> str:
|
|
"""Query the knowledge base with a question and return the answer."""
|
|
|
|
@abstractmethod
|
|
def add(
|
|
self,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
"""Add content to the knowledge base."""
|
|
|
|
|
|
class RagTool(BaseTool):
|
|
class _AdapterPlaceholder(Adapter):
|
|
def query(
|
|
self,
|
|
question: str,
|
|
similarity_threshold: float | None = None,
|
|
limit: int | None = None,
|
|
) -> str:
|
|
raise NotImplementedError
|
|
|
|
def add(self, *args: Any, **kwargs: Any) -> None:
|
|
raise NotImplementedError
|
|
|
|
name: str = "Knowledge base"
|
|
description: str = "A knowledge base that can be used to answer questions."
|
|
summarize: bool = False
|
|
similarity_threshold: float = 0.6
|
|
limit: int = 5
|
|
collection_name: str = "rag_tool_collection"
|
|
adapter: Adapter = Field(default_factory=_AdapterPlaceholder)
|
|
config: RagToolConfig = Field(
|
|
default_factory=RagToolConfig,
|
|
description="Configuration format accepted by RagTool.",
|
|
)
|
|
|
|
@field_validator("config", mode="before")
|
|
@classmethod
|
|
def _validate_config(cls, value: Any) -> Any:
|
|
"""Validate config with improved error messages for embedding providers."""
|
|
if not isinstance(value, dict):
|
|
return value
|
|
|
|
embedding_model = value.get("embedding_model")
|
|
if embedding_model:
|
|
try:
|
|
value["embedding_model"] = _validate_embedding_config(embedding_model)
|
|
except ValueError:
|
|
raise
|
|
|
|
return value
|
|
|
|
@model_validator(mode="after")
|
|
def _ensure_adapter(self) -> Self:
|
|
if isinstance(self.adapter, RagTool._AdapterPlaceholder):
|
|
from crewai_tools.adapters.crewai_rag_adapter import CrewAIRagAdapter
|
|
|
|
provider_cfg = self._parse_config(self.config)
|
|
self.adapter = CrewAIRagAdapter(
|
|
collection_name=self.collection_name,
|
|
summarize=self.summarize,
|
|
similarity_threshold=self.similarity_threshold,
|
|
limit=self.limit,
|
|
config=provider_cfg,
|
|
)
|
|
return self
|
|
|
|
def _parse_config(self, config: RagToolConfig) -> Any:
|
|
"""Normalize the RagToolConfig into a provider-specific config object.
|
|
|
|
Defaults to 'chromadb' with no extra provider config if none is supplied.
|
|
"""
|
|
if not config:
|
|
return self._create_provider_config("chromadb", {}, None)
|
|
|
|
vectordb_cfg = cast(VectorDbConfig, config.get("vectordb", {}))
|
|
provider: Literal["chromadb", "qdrant"] = vectordb_cfg.get(
|
|
"provider", "chromadb"
|
|
)
|
|
provider_config: dict[str, Any] = vectordb_cfg.get("config", {})
|
|
|
|
supported = ("chromadb", "qdrant")
|
|
if provider not in supported:
|
|
raise ValueError(
|
|
f"Unsupported vector database provider: '{provider}'. "
|
|
f"CrewAI RAG currently supports: {', '.join(supported)}."
|
|
)
|
|
|
|
embedding_spec: ProviderSpec | None = config.get("embedding_model")
|
|
if embedding_spec:
|
|
embedding_spec = cast(
|
|
ProviderSpec, _validate_embedding_config(embedding_spec)
|
|
)
|
|
|
|
embedding_function = build_embedder(embedding_spec) if embedding_spec else None
|
|
return self._create_provider_config(
|
|
provider, provider_config, embedding_function
|
|
)
|
|
|
|
@staticmethod
|
|
def _create_provider_config(
|
|
provider: Literal["chromadb", "qdrant"],
|
|
provider_config: dict[str, Any],
|
|
embedding_function: EmbeddingFunction[Any] | None,
|
|
) -> Any:
|
|
"""Instantiate provider config with optional embedding_function injected."""
|
|
if provider == "chromadb":
|
|
from crewai.rag.chromadb.config import ChromaDBConfig
|
|
|
|
kwargs = dict(provider_config)
|
|
if embedding_function is not None:
|
|
kwargs["embedding_function"] = embedding_function
|
|
return ChromaDBConfig(**kwargs)
|
|
|
|
if provider == "qdrant":
|
|
from crewai.rag.qdrant.config import QdrantConfig
|
|
|
|
kwargs = dict(provider_config)
|
|
if embedding_function is not None:
|
|
kwargs["embedding_function"] = embedding_function
|
|
return QdrantConfig(**kwargs)
|
|
|
|
raise ValueError(f"Unhandled provider: {provider}")
|
|
|
|
def add(
|
|
self,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
self.adapter.add(*args, **kwargs)
|
|
|
|
def _run(
|
|
self,
|
|
query: str,
|
|
similarity_threshold: float | None = None,
|
|
limit: int | None = None,
|
|
) -> str:
|
|
threshold = (
|
|
similarity_threshold
|
|
if similarity_threshold is not None
|
|
else self.similarity_threshold
|
|
)
|
|
result_limit = limit if limit is not None else self.limit
|
|
return f"Relevant Content:\n{self.adapter.query(query, similarity_threshold=threshold, limit=result_limit)}"
|