Files
crewAI/docs/en/mcp/dsl-integration.mdx
2025-11-24 13:15:24 -08:00

345 lines
9.5 KiB
Plaintext

---
title: MCP DSL Integration
description: Learn how to use CrewAI's simple DSL syntax to integrate MCP servers directly with your agents using the mcps field.
icon: code
mode: "wide"
---
## Overview
CrewAI's MCP DSL (Domain Specific Language) integration provides the **simplest way** to connect your agents to MCP (Model Context Protocol) servers. Just add an `mcps` field to your agent and CrewAI handles all the complexity automatically.
<Info>
This is the **recommended approach** for most MCP use cases. For advanced scenarios requiring manual connection management, see [MCPServerAdapter](/en/mcp/overview#advanced-mcpserveradapter).
</Info>
## Basic Usage
Add MCP servers to your agent using the `mcps` field:
```python
from crewai import Agent
agent = Agent(
role="Research Assistant",
goal="Help with research and analysis tasks",
backstory="Expert assistant with access to advanced research tools",
mcps=[
"https://mcp.exa.ai/mcp?api_key=your_key&profile=research"
]
)
# MCP tools are now automatically available!
# No need for manual connection management or tool configuration
```
## Supported Reference Formats
### External MCP Remote Servers
```python
# Basic HTTPS server
"https://api.example.com/mcp"
# Server with authentication
"https://mcp.exa.ai/mcp?api_key=your_key&profile=your_profile"
# Server with custom path
"https://services.company.com/api/v1/mcp"
```
### Specific Tool Selection
Use the `#` syntax to select specific tools from a server:
```python
# Get only the forecast tool from weather server
"https://weather.api.com/mcp#get_forecast"
# Get only the search tool from Exa
"https://mcp.exa.ai/mcp?api_key=your_key#web_search_exa"
```
### CrewAI AOP Marketplace
Access tools from the CrewAI AOP marketplace:
```python
# Full service with all tools
"crewai-amp:financial-data"
# Specific tool from AMP service
"crewai-amp:research-tools#pubmed_search"
# Multiple AMP services
mcps=[
"crewai-amp:weather-insights",
"crewai-amp:market-analysis",
"crewai-amp:social-media-monitoring"
]
```
## Complete Example
Here's a complete example using multiple MCP servers:
```python
from crewai import Agent, Task, Crew, Process
# Create agent with multiple MCP sources
multi_source_agent = Agent(
role="Multi-Source Research Analyst",
goal="Conduct comprehensive research using multiple data sources",
backstory="""Expert researcher with access to web search, weather data,
financial information, and academic research tools""",
mcps=[
# External MCP servers
"https://mcp.exa.ai/mcp?api_key=your_exa_key&profile=research",
"https://weather.api.com/mcp#get_current_conditions",
# CrewAI AOP marketplace
"crewai-amp:financial-insights",
"crewai-amp:academic-research#pubmed_search",
"crewai-amp:market-intelligence#competitor_analysis"
]
)
# Create comprehensive research task
research_task = Task(
description="""Research the impact of AI agents on business productivity.
Include current weather impacts on remote work, financial market trends,
and recent academic publications on AI agent frameworks.""",
expected_output="""Comprehensive report covering:
1. AI agent business impact analysis
2. Weather considerations for remote work
3. Financial market trends related to AI
4. Academic research citations and insights
5. Competitive landscape analysis""",
agent=multi_source_agent
)
# Create and execute crew
research_crew = Crew(
agents=[multi_source_agent],
tasks=[research_task],
process=Process.sequential,
verbose=True
)
result = research_crew.kickoff()
print(f"Research completed with {len(multi_source_agent.mcps)} MCP data sources")
```
## Tool Naming and Organization
CrewAI automatically handles tool naming to prevent conflicts:
```python
# Original MCP server has tools: "search", "analyze"
# CrewAI creates tools: "mcp_exa_ai_search", "mcp_exa_ai_analyze"
agent = Agent(
role="Tool Organization Demo",
goal="Show how tool naming works",
backstory="Demonstrates automatic tool organization",
mcps=[
"https://mcp.exa.ai/mcp?api_key=key", # Tools: mcp_exa_ai_*
"https://weather.service.com/mcp", # Tools: weather_service_com_*
"crewai-amp:financial-data" # Tools: financial_data_*
]
)
# Each server's tools get unique prefixes based on the server name
# This prevents naming conflicts between different MCP servers
```
## Error Handling and Resilience
The MCP DSL is designed to be robust and user-friendly:
### Graceful Server Failures
```python
agent = Agent(
role="Resilient Researcher",
goal="Research despite server issues",
backstory="Experienced researcher who adapts to available tools",
mcps=[
"https://primary-server.com/mcp", # Primary data source
"https://backup-server.com/mcp", # Backup if primary fails
"https://unreachable-server.com/mcp", # Will be skipped with warning
"crewai-amp:reliable-service" # Reliable AMP service
]
)
# Agent will:
# 1. Successfully connect to working servers
# 2. Log warnings for failing servers
# 3. Continue with available tools
# 4. Not crash or hang on server failures
```
### Timeout Protection
All MCP operations have built-in timeouts:
- **Connection timeout**: 10 seconds
- **Tool execution timeout**: 30 seconds
- **Discovery timeout**: 15 seconds
```python
# These servers will timeout gracefully if unresponsive
mcps=[
"https://slow-server.com/mcp", # Will timeout after 10s if unresponsive
"https://overloaded-api.com/mcp" # Will timeout if discovery takes > 15s
]
```
## Performance Features
### Automatic Caching
Tool schemas are cached for 5 minutes to improve performance:
```python
# First agent creation - discovers tools from server
agent1 = Agent(role="First", goal="Test", backstory="Test",
mcps=["https://api.example.com/mcp"])
# Second agent creation (within 5 minutes) - uses cached tool schemas
agent2 = Agent(role="Second", goal="Test", backstory="Test",
mcps=["https://api.example.com/mcp"]) # Much faster!
```
### On-Demand Connections
Tool connections are established only when tools are actually used:
```python
# Agent creation is fast - no MCP connections made yet
agent = Agent(
role="On-Demand Agent",
goal="Use tools efficiently",
backstory="Efficient agent that connects only when needed",
mcps=["https://api.example.com/mcp"]
)
# MCP connection is made only when a tool is actually executed
# This minimizes connection overhead and improves startup performance
```
## Integration with Existing Features
MCP tools work seamlessly with other CrewAI features:
```python
from crewai.tools import BaseTool
class CustomTool(BaseTool):
name: str = "custom_analysis"
description: str = "Custom analysis tool"
def _run(self, **kwargs):
return "Custom analysis result"
agent = Agent(
role="Full-Featured Agent",
goal="Use all available tool types",
backstory="Agent with comprehensive tool access",
# All tool types work together
tools=[CustomTool()], # Custom tools
apps=["gmail", "slack"], # Platform integrations
mcps=[ # MCP servers
"https://mcp.exa.ai/mcp?api_key=key",
"crewai-amp:research-tools"
],
verbose=True,
max_iter=15
)
```
## Best Practices
### 1. Use Specific Tools When Possible
```python
# Good - only get the tools you need
mcps=["https://weather.api.com/mcp#get_forecast"]
# Less efficient - gets all tools from server
mcps=["https://weather.api.com/mcp"]
```
### 2. Handle Authentication Securely
```python
import os
# Store API keys in environment variables
exa_key = os.getenv("EXA_API_KEY")
exa_profile = os.getenv("EXA_PROFILE")
agent = Agent(
role="Secure Agent",
goal="Use MCP tools securely",
backstory="Security-conscious agent",
mcps=[f"https://mcp.exa.ai/mcp?api_key={exa_key}&profile={exa_profile}"]
)
```
### 3. Plan for Server Failures
```python
# Always include backup options
mcps=[
"https://primary-api.com/mcp", # Primary choice
"https://backup-api.com/mcp", # Backup option
"crewai-amp:reliable-service" # AMP fallback
]
```
### 4. Use Descriptive Agent Roles
```python
agent = Agent(
role="Weather-Enhanced Market Analyst",
goal="Analyze markets considering weather impacts",
backstory="Financial analyst with access to weather data for agricultural market insights",
mcps=[
"https://weather.service.com/mcp#get_forecast",
"crewai-amp:financial-data#stock_analysis"
]
)
```
## Troubleshooting
### Common Issues
**No tools discovered:**
```python
# Check your MCP server URL and authentication
# Verify the server is running and accessible
mcps=["https://mcp.example.com/mcp?api_key=valid_key"]
```
**Connection timeouts:**
```python
# Server may be slow or overloaded
# CrewAI will log warnings and continue with other servers
# Check server status or try backup servers
```
**Authentication failures:**
```python
# Verify API keys and credentials
# Check server documentation for required parameters
# Ensure query parameters are properly URL encoded
```
## Advanced: MCPServerAdapter
For complex scenarios requiring manual connection management, use the `MCPServerAdapter` class from `crewai-tools`. Using a Python context manager (`with` statement) is the recommended approach as it automatically handles starting and stopping the connection to the MCP server.