Files
crewAI/lib/crewai/tests/test_flow_multimodal.py
Greyson LaLonde c4c9208229 feat: native multimodal file handling; openai responses api
- add input_files parameter to Crew.kickoff(), Flow.kickoff(), Task, and Agent.kickoff()
- add provider-specific file uploaders for OpenAI, Anthropic, Gemini, and Bedrock
- add file type detection, constraint validation, and automatic format conversion
- add URL file source support for multimodal content
- add streaming uploads for large files
- add prompt caching support for Anthropic
- add OpenAI Responses API support
2026-01-23 15:13:25 -05:00

347 lines
11 KiB
Python

"""Integration tests for Flow multimodal functionality with input_files.
Tests flow.kickoff(input_files={...}) with crews that process files.
"""
from pathlib import Path
import pytest
from crewai import Agent, Crew, LLM, Task
from crewai.flow.flow import Flow, listen, start
from crewai_files import AudioFile, File, ImageFile, PDFFile, TextFile, VideoFile
TEST_FIXTURES_DIR = (
Path(__file__).parent.parent.parent / "crewai-files" / "tests" / "fixtures"
)
TEST_IMAGE_PATH = TEST_FIXTURES_DIR / "revenue_chart.png"
TEST_TEXT_PATH = TEST_FIXTURES_DIR / "review_guidelines.txt"
TEST_VIDEO_PATH = TEST_FIXTURES_DIR / "sample_video.mp4"
TEST_AUDIO_PATH = TEST_FIXTURES_DIR / "sample_audio.wav"
MINIMAL_PDF = b"""%PDF-1.4
1 0 obj << /Type /Catalog /Pages 2 0 R >> endobj
2 0 obj << /Type /Pages /Kids [3 0 R] /Count 1 >> endobj
3 0 obj << /Type /Page /Parent 2 0 R /MediaBox [0 0 612 792] >> endobj
xref
0 4
0000000000 65535 f
0000000009 00000 n
0000000058 00000 n
0000000115 00000 n
trailer << /Size 4 /Root 1 0 R >>
startxref
196
%%EOF
"""
@pytest.fixture
def image_file() -> ImageFile:
"""Create an ImageFile from test fixture."""
return ImageFile(source=str(TEST_IMAGE_PATH))
@pytest.fixture
def image_bytes() -> bytes:
"""Load test image bytes."""
return TEST_IMAGE_PATH.read_bytes()
@pytest.fixture
def text_file() -> TextFile:
"""Create a TextFile from test fixture."""
return TextFile(source=str(TEST_TEXT_PATH))
@pytest.fixture
def pdf_file() -> PDFFile:
"""Create a PDFFile from minimal PDF bytes."""
return PDFFile(source=MINIMAL_PDF)
@pytest.fixture
def video_file() -> VideoFile:
"""Create a VideoFile from test fixture."""
if not TEST_VIDEO_PATH.exists():
pytest.skip("sample_video.mp4 fixture not found")
return VideoFile(source=str(TEST_VIDEO_PATH))
@pytest.fixture
def audio_file() -> AudioFile:
"""Create an AudioFile from test fixture."""
if not TEST_AUDIO_PATH.exists():
pytest.skip("sample_audio.wav fixture not found")
return AudioFile(source=str(TEST_AUDIO_PATH))
def _create_analyst_crew(llm: LLM) -> Crew:
"""Create a simple analyst crew for file analysis."""
agent = Agent(
role="File Analyst",
goal="Analyze and describe files accurately",
backstory="Expert at analyzing various file types.",
llm=llm,
verbose=False,
)
task = Task(
description="Describe the file(s) you see. Be brief, one sentence max.",
expected_output="A brief description of the file.",
agent=agent,
)
return Crew(agents=[agent], tasks=[task], verbose=False)
class TestFlowMultimodalOpenAI:
"""Test Flow with input_files using OpenAI models."""
@pytest.mark.vcr()
def test_flow_with_image_file(self, image_file: ImageFile) -> None:
"""Test flow passes input_files to crew."""
class ImageAnalysisFlow(Flow):
@start()
def analyze_image(self) -> str:
llm = LLM(model="openai/gpt-4o-mini")
crew = _create_analyst_crew(llm)
result = crew.kickoff()
return result.raw
flow = ImageAnalysisFlow()
result = flow.kickoff(input_files={"chart": image_file})
assert result
assert isinstance(result, str)
assert len(result) > 0
@pytest.mark.vcr()
def test_flow_with_image_bytes(self, image_bytes: bytes) -> None:
"""Test flow with image bytes."""
class ImageAnalysisFlow(Flow):
@start()
def analyze_image(self) -> str:
llm = LLM(model="openai/gpt-4o-mini")
crew = _create_analyst_crew(llm)
result = crew.kickoff()
return result.raw
flow = ImageAnalysisFlow()
result = flow.kickoff(input_files={"chart": ImageFile(source=image_bytes)})
assert result
assert isinstance(result, str)
assert len(result) > 0
class TestFlowMultimodalAnthropic:
"""Test Flow with input_files using Anthropic models."""
@pytest.mark.vcr()
def test_flow_with_image_file(self, image_file: ImageFile) -> None:
"""Test flow passes input_files to crew."""
class ImageAnalysisFlow(Flow):
@start()
def analyze_image(self) -> str:
llm = LLM(model="anthropic/claude-3-5-haiku-20241022")
crew = _create_analyst_crew(llm)
result = crew.kickoff()
return result.raw
flow = ImageAnalysisFlow()
result = flow.kickoff(input_files={"chart": image_file})
assert result
assert isinstance(result, str)
assert len(result) > 0
@pytest.mark.vcr()
def test_flow_with_pdf_file(self, pdf_file: PDFFile) -> None:
"""Test flow with PDF file."""
class PDFAnalysisFlow(Flow):
@start()
def analyze_pdf(self) -> str:
llm = LLM(model="anthropic/claude-3-5-haiku-20241022")
crew = _create_analyst_crew(llm)
result = crew.kickoff()
return result.raw
flow = PDFAnalysisFlow()
result = flow.kickoff(input_files={"document": pdf_file})
assert result
assert isinstance(result, str)
assert len(result) > 0
class TestFlowMultimodalGemini:
"""Test Flow with input_files using Gemini models."""
@pytest.mark.vcr()
def test_flow_with_image_file(self, image_file: ImageFile) -> None:
"""Test flow with image file."""
class ImageAnalysisFlow(Flow):
@start()
def analyze_image(self) -> str:
llm = LLM(model="gemini/gemini-2.0-flash")
crew = _create_analyst_crew(llm)
result = crew.kickoff()
return result.raw
flow = ImageAnalysisFlow()
result = flow.kickoff(input_files={"chart": image_file})
assert result
assert isinstance(result, str)
assert len(result) > 0
@pytest.mark.vcr()
def test_flow_with_text_file(self, text_file: TextFile) -> None:
"""Test flow with text file."""
class TextAnalysisFlow(Flow):
@start()
def analyze_text(self) -> str:
llm = LLM(model="gemini/gemini-2.0-flash")
crew = _create_analyst_crew(llm)
result = crew.kickoff()
return result.raw
flow = TextAnalysisFlow()
result = flow.kickoff(input_files={"readme": text_file})
assert result
assert isinstance(result, str)
assert len(result) > 0
@pytest.mark.vcr()
def test_flow_with_video_file(self, video_file: VideoFile) -> None:
"""Test flow with video file."""
class VideoAnalysisFlow(Flow):
@start()
def analyze_video(self) -> str:
llm = LLM(model="gemini/gemini-2.0-flash")
crew = _create_analyst_crew(llm)
result = crew.kickoff()
return result.raw
flow = VideoAnalysisFlow()
result = flow.kickoff(input_files={"video": video_file})
assert result
assert isinstance(result, str)
assert len(result) > 0
@pytest.mark.vcr()
def test_flow_with_audio_file(self, audio_file: AudioFile) -> None:
"""Test flow with audio file."""
class AudioAnalysisFlow(Flow):
@start()
def analyze_audio(self) -> str:
llm = LLM(model="gemini/gemini-2.0-flash")
crew = _create_analyst_crew(llm)
result = crew.kickoff()
return result.raw
flow = AudioAnalysisFlow()
result = flow.kickoff(input_files={"audio": audio_file})
assert result
assert isinstance(result, str)
assert len(result) > 0
class TestFlowMultimodalMultiStep:
"""Test multi-step flows with file processing."""
@pytest.mark.vcr()
def test_flow_with_multiple_crews(self, image_file: ImageFile) -> None:
"""Test flow passes files through multiple crews."""
class MultiStepFlow(Flow):
@start()
def describe_image(self) -> str:
llm = LLM(model="openai/gpt-4o-mini")
crew = _create_analyst_crew(llm)
result = crew.kickoff()
return result.raw
@listen(describe_image)
def summarize_description(self, description: str) -> str:
llm = LLM(model="openai/gpt-4o-mini")
agent = Agent(
role="Summarizer",
goal="Summarize text concisely",
backstory="Expert at summarization.",
llm=llm,
verbose=False,
)
task = Task(
description=f"Summarize this in 5 words: {description}",
expected_output="A 5-word summary.",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task], verbose=False)
result = crew.kickoff()
return result.raw
flow = MultiStepFlow()
result = flow.kickoff(input_files={"chart": image_file})
assert result
assert isinstance(result, str)
assert len(result) > 0
@pytest.mark.vcr()
def test_flow_with_mixed_files(
self, image_file: ImageFile, text_file: TextFile
) -> None:
"""Test flow with multiple file types."""
class MixedFilesFlow(Flow):
@start()
def analyze_files(self) -> str:
llm = LLM(model="gemini/gemini-2.0-flash")
crew = _create_analyst_crew(llm)
result = crew.kickoff()
return result.raw
flow = MixedFilesFlow()
result = flow.kickoff(
input_files={"chart": image_file, "readme": text_file}
)
assert result
assert isinstance(result, str)
assert len(result) > 0
class TestFlowMultimodalAsync:
"""Test async flow execution with files."""
@pytest.mark.vcr()
@pytest.mark.asyncio
async def test_async_flow_with_image(self, image_file: ImageFile) -> None:
"""Test async flow with image file."""
class AsyncImageFlow(Flow):
@start()
def analyze_image(self) -> str:
llm = LLM(model="openai/gpt-4o-mini")
crew = _create_analyst_crew(llm)
result = crew.kickoff()
return result.raw
flow = AsyncImageFlow()
result = await flow.kickoff_async(input_files={"chart": image_file})
assert result
assert isinstance(result, str)
assert len(result) > 0