Files
crewAI/docs/tools/patronuslocalevaluatortool.mdx
2024-12-30 20:38:15 -05:00

74 lines
3.3 KiB
Plaintext

---
title: Patronus Local Evaluator Tool
description: The `PatronusLocalEvaluatorTool` is designed to evaluate agent inputs,outputs and context based on a user defined function and log evaluation results to [app.patronus.ai](http://app.patronus.ai)
icon: shield
---
# `PatronusLocalEvaluatorTool`
## Description
The `PatronusLocalEvaluatorTool` is designed to evaluate agent inputs, outputs and context based on a user defined local function and log evaluation results to [app.patronus.ai](http://app.patronus.ai)
It utilizes the [Patronus AI](https://patronus.ai/) API to
1. Evaluate the inputs/outputs/context according to the user defined metric/evaluation criteria
2. Log the results to [app.patronus.ai](https://app.patronus.ai) where they can be visualized
## Installation
To incorporate this tool into your project, follow the installation instructions below:
```shell
pip install 'crewai[tools]'
```
## Steps to Get Started
Follow these steps correctly to use the PatronusLocalEvaluatorTool :
1. Confirm that the `crewai[tools]` package is installed in your Python environment.
2. Acquire a Patronus API key by registering for a free account at [patronus.ai](https://patronus.ai/).
3. Export your API key using `export PATRONUS_API_KEY=[YOUR_KEY_HERE]`
## Example
This example demonstrates the use of the PatronusLocalEvaluatorTool.
```python
from patronus import Client, EvaluationResult
from crewai_tools import PatronusLocalEvaluatorTool
client = Client()
# Register a local evaluation function. For more details refer to https://docs.patronus.ai/docs/experiment-evaluators
@client.register_local_evaluator("local_evaluator_name")
def my_evaluator(**kwargs):
return EvaluationResult(pass_="PASS", score=0.5, explanation="Explanation test")
patronus_eval_tool = PatronusLocalEvaluatorTool(
evaluator="local_evaluator_name", evaluated_model_gold_answer="test"
)
coding_agent = Agent(
role="Coding Agent",
goal="Generate high quality code and verify that the output is code by using Patronus AI's evaluation tool.",
backstory="You are an experienced coder who can generate high quality python code. You can follow complex instructions accurately and effectively.",
tools=[patronus_eval_tool],
verbose=True,
)
generate_code = Task(
description="Create a simple program to generate the first N numbers in the Fibonacci sequence. Select the most appropriate evaluator and criteria for evaluating your output.",
expected_output="Program that generates the first N numbers in the Fibonacci sequence.",
agent=coding_agent,
)
crew = Crew(agents=[coding_agent], tasks=[generate_code])
crew.kickoff()
```
## Conclusion
Using `PatronusLocalEvaluatorTool` users can easily and quickly define custom evaluation functions and help improve customer confidence in their agentic systems.
Using patronus.ai, users can conveniently log their custom metrics to [app.patronus.ai](https://app.patronus.ai), making it easier for the user to visualize trends and debug their agentic pipelines.
Users can also define their own criteria at [app.patronus.ai](https://app.patronus.ai) or let the agent choose an existing evaluator on the Patronus platform to help with custom evaluation needs.
For using custom-defined criteria and local evaluators it is encouraged to use the `PatronusPredifinedCriteriaEvalTool` and `PatronusEvalTool` respectively.