Files
crewAI/lib/crewai/tests/cassettes/test_agent_with_knowledge_sources.yaml
Lorenze Jay d1343b96ed Release/v1.0.0 (#3618)
* feat: add `apps` & `actions` attributes to Agent (#3504)

* feat: add app attributes to Agent

* feat: add actions attribute to Agent

* chore: resolve linter issues

* refactor: merge the apps and actions parameters into a single one

* fix: remove unnecessary print

* feat: logging error when CrewaiPlatformTools fails

* chore: export CrewaiPlatformTools directly from crewai_tools

* style: resolver linter issues

* test: fix broken tests

* style: solve linter issues

* fix: fix broken test

* feat: monorepo restructure and test/ci updates

- Add crewai workspace member
- Fix vcr cassette paths and restore test dirs
- Resolve ci failures and update linter/pytest rules

* chore: update python version to 3.13 and package metadata

* feat: add crewai-tools workspace and fix tests/dependencies

* feat: add crewai-tools workspace structure

* Squashed 'temp-crewai-tools/' content from commit 9bae5633

git-subtree-dir: temp-crewai-tools
git-subtree-split: 9bae56339096cb70f03873e600192bd2cd207ac9

* feat: configure crewai-tools workspace package with dependencies

* fix: apply ruff auto-formatting to crewai-tools code

* chore: update lockfile

* fix: don't allow tool tests yet

* fix: comment out extra pytest flags for now

* fix: remove conflicting conftest.py from crewai-tools tests

* fix: resolve dependency conflicts and test issues

- Pin vcrpy to 7.0.0 to fix pytest-recording compatibility
- Comment out types-requests to resolve urllib3 conflict
- Update requests requirement in crewai-tools to >=2.32.0

* chore: update CI workflows and docs for monorepo structure

* chore: update CI workflows and docs for monorepo structure

* fix: actions syntax

* chore: ci publish and pin versions

* fix: add permission to action

* chore: bump version to 1.0.0a1 across all packages

- Updated version to 1.0.0a1 in pyproject.toml for crewai and crewai-tools
- Adjusted version in __init__.py files for consistency

* WIP: v1 docs (#3626)

(cherry picked from commit d46e20fa09bcd2f5916282f5553ddeb7183bd92c)

* docs: parity for all translations

* docs: full name of acronym AMP

* docs: fix lingering unused code

* docs: expand contextual options in docs.json

* docs: add contextual action to request feature on GitHub (#3635)

* chore: apply linting fixes to crewai-tools

* feat: add required env var validation for brightdata

Co-authored-by: Greyson Lalonde <greyson.r.lalonde@gmail.com>

* fix: handle properly anyOf oneOf allOf schema's props

Co-authored-by: Greyson Lalonde <greyson.r.lalonde@gmail.com>

* feat: bump version to 1.0.0a2

* Lorenze/native inference sdks (#3619)

* ruff linted

* using native sdks with litellm fallback

* drop exa

* drop print on completion

* Refactor LLM and utility functions for type consistency

- Updated `max_tokens` parameter in `LLM` class to accept `float` in addition to `int`.
- Modified `create_llm` function to ensure consistent type hints and return types, now returning `LLM | BaseLLM | None`.
- Adjusted type hints for various parameters in `create_llm` and `_llm_via_environment_or_fallback` functions for improved clarity and type safety.
- Enhanced test cases to reflect changes in type handling and ensure proper instantiation of LLM instances.

* fix agent_tests

* fix litellm tests and usagemetrics fix

* drop print

* Refactor LLM event handling and improve test coverage

- Removed commented-out event emission for LLM call failures in `llm.py`.
- Added `from_agent` parameter to `CrewAgentExecutor` for better context in LLM responses.
- Enhanced test for LLM call failure to simulate OpenAI API failure and updated assertions for clarity.
- Updated agent and task ID assertions in tests to ensure they are consistently treated as strings.

* fix test_converter

* fixed tests/agents/test_agent.py

* Refactor LLM context length exception handling and improve provider integration

- Renamed `LLMContextLengthExceededException` to `LLMContextLengthExceededExceptionError` for clarity and consistency.
- Updated LLM class to pass the provider parameter correctly during initialization.
- Enhanced error handling in various LLM provider implementations to raise the new exception type.
- Adjusted tests to reflect the updated exception name and ensure proper error handling in context length scenarios.

* Enhance LLM context window handling across providers

- Introduced CONTEXT_WINDOW_USAGE_RATIO to adjust context window sizes dynamically for Anthropic, Azure, Gemini, and OpenAI LLMs.
- Added validation for context window sizes in Azure and Gemini providers to ensure they fall within acceptable limits.
- Updated context window size calculations to use the new ratio, improving consistency and adaptability across different models.
- Removed hardcoded context window sizes in favor of ratio-based calculations for better flexibility.

* fix test agent again

* fix test agent

* feat: add native LLM providers for Anthropic, Azure, and Gemini

- Introduced new completion implementations for Anthropic, Azure, and Gemini, integrating their respective SDKs.
- Added utility functions for tool validation and extraction to support function calling across LLM providers.
- Enhanced context window management and token usage extraction for each provider.
- Created a common utility module for shared functionality among LLM providers.

* chore: update dependencies and improve context management

- Removed direct dependency on `litellm` from the main dependencies and added it under extras for better modularity.
- Updated the `litellm` dependency specification to allow for greater flexibility in versioning.
- Refactored context length exception handling across various LLM providers to use a consistent error class.
- Enhanced platform-specific dependency markers for NVIDIA packages to ensure compatibility across different systems.

* refactor(tests): update LLM instantiation to include is_litellm flag in test cases

- Modified multiple test cases in test_llm.py to set the is_litellm parameter to True when instantiating the LLM class.
- This change ensures that the tests are aligned with the latest LLM configuration requirements and improves consistency across test scenarios.
- Adjusted relevant assertions and comments to reflect the updated LLM behavior.

* linter

* linted

* revert constants

* fix(tests): correct type hint in expected model description

- Updated the expected description in the test_generate_model_description_dict_field function to use 'Dict' instead of 'dict' for consistency with type hinting conventions.
- This change ensures that the test accurately reflects the expected output format for model descriptions.

* refactor(llm): enhance LLM instantiation and error handling

- Updated the LLM class to include validation for the model parameter, ensuring it is a non-empty string.
- Improved error handling by logging warnings when the native SDK fails, allowing for a fallback to LiteLLM.
- Adjusted the instantiation of LLM in test cases to consistently include the is_litellm flag, aligning with recent changes in LLM configuration.
- Modified relevant tests to reflect these updates, ensuring better coverage and accuracy in testing scenarios.

* fixed test

* refactor(llm): enhance token usage tracking and add copy methods

- Updated the LLM class to track token usage and log callbacks in streaming mode, improving monitoring capabilities.
- Introduced shallow and deep copy methods for the LLM instance, allowing for better management of LLM configurations and parameters.
- Adjusted test cases to instantiate LLM with the is_litellm flag, ensuring alignment with recent changes in LLM configuration.

* refactor(tests): reorganize imports and enhance error messages in test cases

- Cleaned up import statements in test_crew.py for better organization and readability.
- Enhanced error messages in test cases to use `re.escape` for improved regex matching, ensuring more robust error handling.
- Adjusted comments for clarity and consistency across test scenarios.
- Ensured that all necessary modules are imported correctly to avoid potential runtime issues.

* feat: add base devtooling

* fix: ensure dep refs are updated for devtools

* fix: allow pre-release

* feat: allow release after tag

* feat: bump versions to 1.0.0a3 

Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>

* fix: match tag and release title, ignore devtools build for pypi

* fix: allow failed pypi publish

* feat: introduce trigger listing and execution commands for local development (#3643)

* chore: exclude tests from ruff linting

* chore: exclude tests from GitHub Actions linter

* fix: replace print statements with logger in agent and memory handling

* chore: add noqa for intentional print in printer utility

* fix: resolve linting errors across codebase

* feat: update docs with new approach to consume Platform Actions (#3675)

* fix: remove duplicate line and add explicit env var

* feat: bump versions to 1.0.0a4 (#3686)

* Update triggers docs (#3678)

* docs: introduce triggers list & triggers run command

* docs: add KO triggers docs

* docs: ensure CREWAI_PLATFORM_INTEGRATION_TOKEN is mentioned on docs (#3687)

* Lorenze/bedrock llm (#3693)

* feat: add AWS Bedrock support and update dependencies

- Introduced BedrockCompletion class for AWS Bedrock integration in LLM.
- Added boto3 as a new dependency in both pyproject.toml and uv.lock.
- Updated LLM class to support Bedrock provider.
- Created new files for Bedrock provider implementation.

* using converse api

* converse

* linted

* refactor: update BedrockCompletion class to improve parameter handling

- Changed max_tokens from a fixed integer to an optional integer.
- Simplified model ID assignment by removing the inference profile mapping method.
- Cleaned up comments and unnecessary code related to tool specifications and model-specific parameters.

* feat: improve event bus thread safety and async support

Add thread-safe, async-compatible event bus with read–write locking and
handler dependency ordering. Remove blinker dependency and implement
direct dispatch. Improve type safety, error handling, and deterministic
event synchronization.

Refactor tests to auto-wait for async handlers, ensure clean teardown,
and add comprehensive concurrency coverage. Replace thread-local state
in AgentEvaluator with instance-based locking for correct cross-thread
access. Enhance tracing reliability and event finalization.

* feat: enhance OpenAICompletion class with additional client parameters (#3701)

* feat: enhance OpenAICompletion class with additional client parameters

- Added support for default_headers, default_query, and client_params in the OpenAICompletion class.
- Refactored client initialization to use a dedicated method for client parameter retrieval.
- Introduced new test cases to validate the correct usage of OpenAICompletion with various parameters.

* fix: correct test case for unsupported OpenAI model

- Updated the test_openai.py to ensure that the LLM instance is created before calling the method, maintaining proper error handling for unsupported models.
- This change ensures that the test accurately checks for the NotFoundError when an invalid model is specified.

* fix: enhance error handling in OpenAICompletion class

- Added specific exception handling for NotFoundError and APIConnectionError in the OpenAICompletion class to provide clearer error messages and improve logging.
- Updated the test case for unsupported models to ensure it raises a ValueError with the appropriate message when a non-existent model is specified.
- This change improves the robustness of the OpenAI API integration and enhances the clarity of error reporting.

* fix: improve test for unsupported OpenAI model handling

- Refactored the test case in test_openai.py to create the LLM instance after mocking the OpenAI client, ensuring proper error handling for unsupported models.
- This change enhances the clarity of the test by accurately checking for ValueError when a non-existent model is specified, aligning with recent improvements in error handling for the OpenAICompletion class.

* feat: bump versions to 1.0.0b1 (#3706)

* Lorenze/tools drop litellm (#3710)

* completely drop litellm and correctly pass config for qdrant

* feat: add support for additional embedding models in EmbeddingService

- Expanded the list of supported embedding models to include Google Vertex, Hugging Face, Jina, Ollama, OpenAI, Roboflow, Watson X, custom embeddings, Sentence Transformers, Text2Vec, OpenClip, and Instructor.
- This enhancement improves the versatility of the EmbeddingService by allowing integration with a wider range of embedding providers.

* fix: update collection parameter handling in CrewAIRagAdapter

- Changed the condition for setting vectors_config in the CrewAIRagAdapter to check for QdrantConfig instance instead of using hasattr. This improves type safety and ensures proper configuration handling for Qdrant integration.

* moved stagehand as optional dep (#3712)

* feat: bump versions to 1.0.0b2 (#3713)

* feat: enhance AnthropicCompletion class with additional client parame… (#3707)

* feat: enhance AnthropicCompletion class with additional client parameters and tool handling

- Added support for client_params in the AnthropicCompletion class to allow for additional client configuration.
- Refactored client initialization to use a dedicated method for retrieving client parameters.
- Implemented a new method to handle tool use conversation flow, ensuring proper execution and response handling.
- Introduced comprehensive test cases to validate the functionality of the AnthropicCompletion class, including tool use scenarios and parameter handling.

* drop print statements

* test: add fixture to mock ANTHROPIC_API_KEY for tests

- Introduced a pytest fixture to automatically mock the ANTHROPIC_API_KEY environment variable for all tests in the test_anthropic.py module.
- This change ensures that tests can run without requiring a real API key, improving test isolation and reliability.

* refactor: streamline streaming message handling in AnthropicCompletion class

- Removed the 'stream' parameter from the API call as it is set internally by the SDK.
- Simplified the handling of tool use events and response construction by extracting token usage from the final message.
- Enhanced the flow for managing tool use conversation, ensuring proper integration with the streaming API response.

* fix streaming here too

* fix: improve error handling in tool conversion for AnthropicCompletion class

- Enhanced exception handling during tool conversion by catching KeyError and ValueError.
- Added logging for conversion errors to aid in debugging and maintain robustness in tool integration.

* feat: enhance GeminiCompletion class with client parameter support (#3717)

* feat: enhance GeminiCompletion class with client parameter support

- Added support for client_params in the GeminiCompletion class to allow for additional client configuration.
- Refactored client initialization into a dedicated method for improved parameter handling.
- Introduced a new method to retrieve client parameters, ensuring compatibility with the base class.
- Enhanced error handling during client initialization to provide clearer messages for missing configuration.
- Updated documentation to reflect the changes in client parameter usage.

* add optional dependancies

* refactor: update test fixture to mock GOOGLE_API_KEY

- Renamed the fixture from `mock_anthropic_api_key` to `mock_google_api_key` to reflect the change in the environment variable being mocked.
- This update ensures that all tests in the module can run with a mocked GOOGLE_API_KEY, improving test isolation and reliability.

* fix tests

* feat: enhance BedrockCompletion class with advanced features

* feat: enhance BedrockCompletion class with advanced features and error handling

- Added support for guardrail configuration, additional model request fields, and custom response field paths in the BedrockCompletion class.
- Improved error handling for AWS exceptions and added token usage tracking with stop reason logging.
- Enhanced streaming response handling with comprehensive event management, including tool use and content block processing.
- Updated documentation to reflect new features and initialization parameters.
- Introduced a new test suite for BedrockCompletion to validate functionality and ensure robust integration with AWS Bedrock APIs.

* chore: add boto typing

* fix: use typing_extensions.Required for Python 3.10 compatibility

---------

Co-authored-by: Greyson Lalonde <greyson.r.lalonde@gmail.com>

* feat: azure native tests

* feat: add Azure AI Inference support and related tests

- Introduced the `azure-ai-inference` package with version `1.0.0b9` and its dependencies in `uv.lock` and `pyproject.toml`.
- Added new test files for Azure LLM functionality, including tests for Azure completion and tool handling.
- Implemented comprehensive test cases to validate Azure-specific behavior and integration with the CrewAI framework.
- Enhanced the testing framework to mock Azure credentials and ensure proper isolation during tests.

* feat: enhance AzureCompletion class with Azure OpenAI support

- Added support for the Azure OpenAI endpoint in the AzureCompletion class, allowing for flexible endpoint configurations.
- Implemented endpoint validation and correction to ensure proper URL formats for Azure OpenAI deployments.
- Enhanced error handling to provide clearer messages for common HTTP errors, including authentication and rate limit issues.
- Updated tests to validate the new endpoint handling and error messaging, ensuring robust integration with Azure AI Inference.
- Refactored parameter preparation to conditionally include the model parameter based on the endpoint type.

* refactor: convert project module to metaclass with full typing

* Lorenze/OpenAI base url backwards support (#3723)

* fix: enhance OpenAICompletion class base URL handling

- Updated the base URL assignment in the OpenAICompletion class to prioritize the new `api_base` attribute and fallback to the environment variable `OPENAI_BASE_URL` if both are not set.
- Added `api_base` to the list of parameters in the OpenAICompletion class to ensure proper configuration and flexibility in API endpoint management.

* feat: enhance OpenAICompletion class with api_base support

- Added the `api_base` parameter to the OpenAICompletion class to allow for flexible API endpoint configuration.
- Updated the `_get_client_params` method to prioritize `base_url` over `api_base`, ensuring correct URL handling.
- Introduced comprehensive tests to validate the behavior of `api_base` and `base_url` in various scenarios, including environment variable fallback.
- Enhanced test coverage for client parameter retrieval, ensuring robust integration with the OpenAI API.

* fix: improve OpenAICompletion class configuration handling

- Added a debug print statement to log the client configuration parameters during initialization for better traceability.
- Updated the base URL assignment logic to ensure it defaults to None if no valid base URL is provided, enhancing robustness in API endpoint configuration.
- Refined the retrieval of the `api_base` environment variable to streamline the configuration process.

* drop print

* feat: improvements on import native sdk support (#3725)

* feat: add support for Anthropic provider and enhance logging

- Introduced the `anthropic` package with version `0.69.0` in `pyproject.toml` and `uv.lock`, allowing for integration with the Anthropic API.
- Updated logging in the LLM class to provide clearer error messages when importing native providers, enhancing debugging capabilities.
- Improved error handling in the AnthropicCompletion class to guide users on installation via the updated error message format.
- Refactored import error handling in other provider classes to maintain consistency in error messaging and installation instructions.

* feat: enhance LLM support with Bedrock provider and update dependencies

- Added support for the `bedrock` provider in the LLM class, allowing integration with AWS Bedrock APIs.
- Updated `uv.lock` to replace `boto3` with `bedrock` in the dependencies, reflecting the new provider structure.
- Introduced `SUPPORTED_NATIVE_PROVIDERS` to include `bedrock` and ensure proper error handling when instantiating native providers.
- Enhanced error handling in the LLM class to raise informative errors when native provider instantiation fails.
- Added tests to validate the behavior of the new Bedrock provider and ensure fallback mechanisms work correctly for unsupported providers.

* test: update native provider fallback tests to expect ImportError

* adjust the test with the expected bevaior - raising ImportError

* this is exoecting the litellm format, all gemini native tests are in test_google.py

---------

Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>

* fix: remove stdout prints, improve test determinism, and update trace handling

Removed `print` statements from the `LLMStreamChunkEvent` handler to prevent
LLM response chunks from being written directly to stdout. The listener now
only tracks chunks internally.

Fixes #3715

Added explicit return statements for trace-related tests.

Updated cassette for `test_failed_evaluation` to reflect new behavior where
an empty trace dict is used instead of returning early.

Ensured deterministic cleanup order in test fixtures by making
`clear_event_bus_handlers` depend on `setup_test_environment`. This guarantees
event bus shutdown and file handle cleanup occur before temporary directory
deletion, resolving intermittent “Directory not empty” errors in CI.

* chore: remove lib/crewai exclusion from pre-commit hooks

* feat: enhance task guardrail functionality and validation

* feat: enhance task guardrail functionality and validation

- Introduced support for multiple guardrails in the Task class, allowing for sequential processing of guardrails.
- Added a new `guardrails` field to the Task model to accept a list of callable guardrails or string descriptions.
- Implemented validation to ensure guardrails are processed correctly, including handling of retries and error messages.
- Enhanced the `_invoke_guardrail_function` method to manage guardrail execution and integrate with existing task output processing.
- Updated tests to cover various scenarios involving multiple guardrails, including success, failure, and retry mechanisms.

This update improves the flexibility and robustness of task execution by allowing for more complex validation scenarios.

* refactor: enhance guardrail type handling in Task model

- Updated the Task class to improve guardrail type definitions, introducing GuardrailType and GuardrailsType for better clarity and type safety.
- Simplified the validation logic for guardrails, ensuring that both single and multiple guardrails are processed correctly.
- Enhanced error messages for guardrail validation to provide clearer feedback when incorrect types are provided.
- This refactor improves the maintainability and robustness of task execution by standardizing guardrail handling.

* feat: implement per-guardrail retry tracking in Task model

- Introduced a new private attribute `_guardrail_retry_counts` to the Task class for tracking retry attempts on a per-guardrail basis.
- Updated the guardrail processing logic to utilize the new retry tracking, allowing for independent retry counts for each guardrail.
- Enhanced error handling to provide clearer feedback when guardrails fail validation after exceeding retry limits.
- Modified existing tests to validate the new retry tracking behavior, ensuring accurate assertions on guardrail retries.

This update improves the robustness and flexibility of task execution by allowing for more granular control over guardrail validation and retry mechanisms.

* chore: 1.0.0b3 bump (#3734)

* chore: full ruff and mypy

improved linting, pre-commit setup, and internal architecture. Configured Ruff to respect .gitignore, added stricter rules, and introduced a lock pre-commit hook with virtualenv activation. Fixed type shadowing in EXASearchTool using a type_ alias to avoid PEP 563 conflicts and resolved circular imports in agent executor and guardrail modules. Removed agent-ops attributes, deprecated watson alias, and dropped crewai-enterprise tools with corresponding test updates. Refactored cache and memoization for thread safety and cleaned up structured output adapters and related logic.

* New MCL DSL (#3738)

* Adding MCP implementation

* New tests for MCP implementation

* fix tests

* update docs

* Revert "New tests for MCP implementation"

This reverts commit 0bbe6dee90.

* linter

* linter

* fix

* verify mcp pacakge exists

* adjust docs to be clear only remote servers are supported

* reverted

* ensure args schema generated properly

* properly close out

---------

Co-authored-by: lorenzejay <lorenzejaytech@gmail.com>
Co-authored-by: Greyson Lalonde <greyson.r.lalonde@gmail.com>

* feat: a2a experimental

experimental a2a support

---------

Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
Co-authored-by: Mike Plachta <mplachta@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
2025-10-20 14:10:19 -07:00

1311 lines
70 KiB
YAML

interactions:
- request:
body: '{"input": ["Brandon''s favorite color is red and he likes Mexican food."],
"model": "text-embedding-3-small", "encoding_format": "base64"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '137'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.68.2
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.68.2
x-stainless-read-timeout:
- '600'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/embeddings
response:
body:
string: !!binary |
H4sIAAAAAAAAA1SaWc+6Srvmz99PsbJO7R2ZpKrWGZPIJIWAip1OBxAVEJGhCqid/d07+H+zu/vE
5OGpOFTdw++67vrPf/31199tVhX5+Pc/f/39Lofx7/+xPrunY/r3P3/9z3/99ddff/3n7/X/W1k0
WXG/l5/nb/nvn+XnXsx///MX999P/u+if/762/QYoUd0U4F4OuelTB9bG6ubqGfj662ZCB/eHD6T
+RTxT3QSUH2anjTYJQEQY6rGqDzaAnXvnl4JL5Y3YOvVPj5/Ga0Wfgkv6Hv3U/oIijRbeP2Zo1uD
JR8cdN5dplfMIVHPM2q80QBmcDm0QNmPBTY+RQ/GVwQ1+Mkfkr85zIM7Hc1+keGsaWS3O/mAK5q2
QZV9bMj2k2wr4oqygYLAIhgXKQIs4ZccZboR4RuSlahnhmLB3/vvH9ne5U+fbwI9U3hQPXGbaubU
nkDjLcU0NC6mPhqPaoKb+2uDnTIu++lRLxskdWce+6MdRGJysBpIhjLHFn202XKq3wIqtP0Rp+O8
j8j5ofoo2dy/1LsxlM2j09doj44WtcQTyGbDVlskZINH45uYVFRW4hg9koNCNTs+MEHnRCjXBy7H
3gZ9qoVWWoGerSJiZ8++jMlf2QHr59Hr98G7TLhiBRZ1F9HQk17uSJZsgl43ND53E5OelfI7gfMH
89QnHY64ui4T1NyKNz1+01pnzI59eBS/iOrNodPJTS98qJ/hnWo9tl1xAt8Yakpq0FRop4p5wUlB
j641SQEdL5u40jWh9v54RH5bDAyLmtcwdtuZXmxJrdidf8no/d3HNBNsXZ8lKxfgdr4i7Nz7WWfP
uBTA+RodKJZyHvAV15Xw9ghjf3o97YqLUSWgaXtvqG2/lEzIy6sBEEkW/OBboxeJEQwgIEmIT8hn
/fhO3w46v8vBPzvDI2MWegugVes99cYF6NPkuDK0rpqMFavq3Fmalw5tpOFAPWHKGW+e2gSIfadT
07uWFcMev6CwMRNqcJuWLfPEh+hKXgvOSgCzuaziAhXK5OGwMPKKm2dowojaH3pI7RYwUEo5GAfX
9QXvWvb8I+9jGM2EYDUScDbUdZfAtPnY1I23EpvKZVzkpz2H2K6PCZtzoR2gTuUnVapLwsSBkzz4
ShLLBxKKI+EREhPO1x6Tx9CVgIkiKqFZb69U82+KK4jfSoOzlzrUzbSQLZ9z66HnECf4wErqsvTy
0hA3cyHNP2lQLfuGa8CQyhE9pf4OkOp98yFxxxmf9MxhvPmdLPTa8xp9BLbjim/d86HrvRy8rmd0
vj4aoGidhlNn7vuFK2cJqNAssSJFST+et88aart7hK371q3E943E8MTTA3VqPeunp1d5cLxAHWdi
p7kcCZmPnGLYYpUcxWoJ77WDPm5zonafqxU/cmqC7m1T+b0gy/o06OkEf/l3nMQGLDVgF9RO9ES1
3B8jdt5XJXyJkNDkexbZyJvbCapFcKU3S1EjYeh3E2QvKaOFdNKY8HYzDjiC1GKFS6nLcKFzKOAU
nmbRO9DZzcs7UFICsW8ODAzOpxTQJQR3rC1My3g5fPmo5bWFLGH4rZYNvpuwNkRIte9eqha05Zo/
53U8iaPOZtfm4Cb3EdXp3gXi45Lk0HuebZxmXqALFvdJEST6C+t2M2dkypUFJCbNsDaSTp9eXJRA
v1V98pR3FDCN3CEc8+ZNzeflGS33ixpDfPhwVM2TrmfHhjlI492FTOeUz+YuzWsgh4+z/2SKGS26
smioeG9jevzSOPpiU5bg92WWWBc/DZuM71eBLz83cNC8X4y5eTNBd+8cCavHVzX4JNsAP7YPWIuu
L9bC7hbAbyggfHwLDhDtp6PI6dF8+LvAB+4S4+eEHjxwqR97ARubZFv+WX9QPTvinekbwj/nrx63
LnujyUA3adrgo/ZSGHflYAnlwmVY359UV5BOUQD117GkRvF0dEG1XxfkKPeMumRQsknFnAeUJKjx
NW9tIIz1ZCKu23b0uIyCu3w9SYYmXnzqGfuG0RfMFMgAV9A4evgu1YLFQTdm5dTbbfdsgt0pRHEl
pNT0hhC0ziVf4FcPrjRVbmr2yx853u4Laq71sa35KUf5xJ2x6oVCxnwhaxAMpzu9uGQC86Z7JqhU
rCu9VI3kLtr7+oRPhLd0f9l17tj1Zfur//iSLweX2ULtwKvT99jdbyDL9zs7BxuJHLABlhvjKs0P
YZzhK8bkubhT5oEJKlN+pFev5KvpamodmreC6AuvyQLLMWlbmBCgYyfg9myRylf8i39stPmR8U0i
lr/4WusJ1ucInmX4Ul8v+via32oSCyqAvT1l+Hp2D66IPTTBiTHLZ8B9utzSySlQ0GOgauBuwWje
BQut8U62/fBksw+bHJ7A+UuVQ7EWFMk34En/ZFgNc5Nxhyl15OXzMbFfYAeIR8n20K173XChfkA1
pf43hddi62Ev5rO+9axTilyvcvytdHhXM5o7E3iD/iGoGmS37Z9CDbn9VNKA5keXX5xIQ6ZY3qlX
vT76kh7LGvZedPcZfLdskRd1QkKDTj5c+zUjRkJgtG83OOt0H8x3wC1o4bme+gOnuJOWKjXaNqZE
D3H20GcQsBpu5zPyaxNF+hJyfgBWHqNmdTqw5aYXHvCrcaSZqgB35akCFZy3w1G0yXrhze1auOYr
dq5R05O40STkJ0VLlaepuuJVbE1w3m9M7Hrq1WW7KNCg/YoxNs/nOuK4LZFAhN8qSYnJ93N0rDVU
HeQ39sPF0rnMYwuybafBazyzafeSn3B3S/fUMUIHzKUnX2B4FRje10SMWianAjCr9oLzG7tn4sBN
HiJWe8bGubSysal3T7C1P4TEN/NVjdjzIXSwdcO2GYoRQ6ltofpebMguPZ31yUqcFKJyiGk2flp3
AnMIkfUOH/7uGeOMVS4rEZWsBR9uRtCzkj/FKNs6GnmZ21rvvZHj/tRPHco7feCf5wLGj1Iiyz3a
9zN3Azk8bS421hzeBLOYJSVMs4uBFbvVIkE5iyZk7Jj77bCbdXItaQeCTPSoVi1mRJqAStD9KjFW
3ZjL5tlTWviheUKzq/2NiFR+Y2jdTQF7Is/ri5XMPjx1hYaN9KNU7HTOn3C5fzUCPrtCZ8+N0sH4
cA18fry2gL1vzQUG11dP0+2p1Htvq0nIqa+lv7STFXHBu+7g7RHERJKfRjTdxy6Ec+edadE+C/bb
Tzg/g5CmFa9WJOPTCW7HO48to9ln7K17HhAHZOCV53vxRqQJSuPlTPj6dtAbziktdPi2No3m3V0f
syG/wPX3k3kv94ApVpbCwAsaepEqkS3B4zQhy2Jn/1sfE7DEjSajNO/3hH/Jjcv8w2tAb7jNsHq/
l0CI8XNBEukvFKP9J6IFaT3knQ2Dpo/9rZ+O/L0Fxqtm+HQOJJ32YWzCk/7O8KFNIZjb9roBlgxU
/20yHrD3u72gPOkGeqznpZ9iVHG//aT7SHlWHBpFAj8eCOn+9Hj1JIgeE1z5FLsmMZgAHqYJNs/9
HofDd/7x1BNiEe3pSdpVGX9otRKUS6BjXFsfNqZE3aAbc3LsGXsTTPgTBqBTvhY9CYLtrjw3wVJx
rmRSM7Gf3DfyYe+d7kTScq5np0ApkFNpL3q0dn02511DIGiGkT5O1dLXh4dnwt5sAY3c6cXY/ljI
cDs+eF9uh9Htdjs3B/sq2mP8PirudD+nJYBnfufXkhhmy7WkLVx5ksbOa4i6a/lp4cr/WBHPwu/7
eGDdf+zv+j4jrh+HUJyDBj/+1EfLCKCn81u/xiAGLFBaDW6C5wNbX+XTE014N3CjBTKOH28tY8cB
e/BeRxo9aKdXtVwZIrJOpSeNr/ohEuTFnmDh5R0N1no+JseogHt7yWiWaQuj8qlLoMtFN7LtPlZf
z7rm/3iT7JZdHc3trlHgWGKLepw8Vgv/8gJ42sQ2Tpiu9tNhCq0/9b388ko133i9Aw+ucbAGurFa
+3OAkCHb2HhuXX3c3MIYfY1PQsDsviJ67YkBOHpyfUnVBpdiepLhTVo22NCNbzX3X16BzH0csVo7
qGdaIFtwd7m9Cds+p2zEU0KADT8R2UTVw52rndDARR+2NHT2BZjmmTORbYh7glY+HW24VX7x5O8e
+AI4IvcJ/PHibDz1aILFI4Q3NzkSR8NTPxG5ShB0Gg4f13418qa4oLV//NELy76BNTxiQP6td989
8MBjUx4JvyeoWtBJI6jyfJOwkx7rLLg6Flz1C02c80afV/0E+6f99tH+vOgsdT4K7Lg9T51rZPYz
ET8ctI/FARsfBnXyOIbKr97TH19MydaS4TvKF2zUUtx/zfvGgYCDIY3v2cwWXm9zeNhPmg/wYPbi
BF4xys1Dg41VD89Nt2/Qqv+oGbxhxBbJNMA42K6/FFxdUfm7WAiZRwffEQn1BdwWBQxdscN7lY91
jnNbCHtp+eC9JnsRe1ySAr7K2MPJ6T5VzEKjALHTxNQunE3frX6FnKSfEiu3aAOGqkkUNFpDgYOV
n+dZlksQdOb8Ry8OmiWX4Hb5hviIbi8w//rXopOtP38xz1r+ec/lbGgg9VHNsVkSzQGIla4SZu2X
aOEzyYdUSWqcBIkUjfqG9//UI0Xpnj3baSqEMvdR/c17OFbTMpkFXPmQqv3NjCbjdAvAhiw6NWa6
BUNXDh7M/GmmJrCxzq/7B9f4o7YtTP23tq8mXHnUZ5N+BLN2kiA8yyOHj89ci5Yizgh847qjxxC+
o3n5bATYtdzk81T49ly5vBf4FUYDm6FQZav+ssBgnY80uEUFWyR5Z0CRrw8Yf3QcjWN7SOCHFgne
e8KkL664GDAqLYveuUzRedvaGdDcp7Mvwe07YiztArjWL7+IqofehmbkwTB6hdjDpR0Jxm4K4GsX
UYyJ+2JzdBw00FpIo750KtmQc/0G+q3uU7/+8NkUa9sN5B7kTd01n1lZuwFE7RLg4zJeXEZvRx+I
2NrhQ95+QXeYLQiqXS3i7FOPYNypkSW+YIiphplVDT8+d13PpkpwvuvzV19yOHPOzQex/2LT1ich
TNVExTY9u/r0LrkFrH4CjuzmlLEGOjlc/SlanJtdRIZ+t8Bzw48EXraDzu7mpEBjjE5kwlfgLlOu
TFCvfQ0ranatONkuFySfrBjb9uuZzfBzJ9DYclefr8k1W4xrbKE1n6iz8Www91Eoo02Xl/SuzhL4
frzXAnaqd6eaJ730eeTUFBrgKdCDoAY6NyxGC8cIVdhP+DJahD7o0OUeyv5UXSQw4E8awqMQ/+I5
ZvMV2waMqrtNXU8V9T/89/PHnHt/0pe0mFp4eH5GMnVFn7F5BwbgUe2ArbNqg+lEdwoyvZngg4ur
iInLq4AN3R+wjranjN/dShn+zveA73f9TfSvDCnMI1wkvBZxivO0UCYLL6xxZlzxBjrUsLW2GplW
/bkIj6KDj/nT+QYBpJ+3siXArDw+6F7fGtUiybOJiBFzROZ9y+WSc2/C43NI8UP7jjrdHQoNNvXY
YSfzJnd+n28GVJ0koHuTncHit7YBn2F6pvqaz8PlMIVw7W9Y3cs9W1oUpCjadxvyeXq6zuynpqAv
0N7UN4cIdPOEwj/+hCn5n2rlu/jP/qujtc2mU1FukJhmG6omj5fLQOuV8LTtHXpsu9wdnykaoA3f
EbZUzXPHMZtbyKJOICy0huh13ra1/OPv9IW7bODcdgPak9WvfHZlYnJQGmRtvZLiTWNGd/f+rqEp
8QV2pbZ2h2/kLn/49WKx77/z/RoFhPo/PVX5VgjSnYOpfxoxo2LzyaHTfnV6yLrPv+v/z2/4+cML
jzcelOUW0bU/V+KYPwso7a0Rx46Q91MWYg7ed6CmxihcMi4ZZQE8bRZikw1D1r2rqoFfeG78cuWx
IWKPHG4nDfrcyjffzS28IPE0KP5kt1pGhD5p0Se/Syvv3/Sfnwb4kO6wflF5QPz9sIF8dgE+/8je
7tRn5ROuPI0Nt6krcn7YPjT4XMaaZ930cdO1KWAfeMUnN+aiBapdAB6yP1CrDbbVfHNHDsilDvw3
SzXGPl9/gTT7tj6sXgedFffUAn/07OpXs+331cDZMr7r+Q3uQhQSg3bIqC9V4b0Xf36GmN42+GA6
rj5fhlqG+3tb+tDW22oJFesi4+wOsPfZKxF3vQYESrfcxxdtono76OGCVn1Hj0vyZtyFtgXsD1vo
c5+iZ8P73hJoqoeAqudAcukvPn/8vfJcRbSnm8MZvC4UD53G+AtaIFy/H94HdFctuiJr8GGLGfYg
E/U+yAsPHK3n7M/nINEnbeoGuFla9+dHuay6qw0krQfIrJ7kbMLS84KamnZYOe33+qrXLlAuVYBX
P0efC/cewqpTTj9/W++zGKz1qhSwDfnWZafAyuHOxxA7x8DrJ/ukkF89xYp5u0VCv7AcartHRFVy
vPYsvrMAvMeEx5odf8BIlmiB2jGr8L5HT3fK97IBVUVhVI82oJ/sb1DAtHnbKw8UjJRzswGnz6Mk
r9V/nOXw68HACxtsiacsGvY7tYCGfXPwwfp67uJNUiLbDZypzfy4n9McSPJL3BBsf4FWieLyytFR
7u5ENqVSnwPSG+BzCCe6nme29IbdQKUp7Z+/o39O57j8+YfUv1zUjLSR3MDIDxV/S99OJD72TgLz
AR4prq0DYB9emX7+ul9+egwGHh9S8KvnAvlwbp1VZwnqmnlZeYHqo+g4OXzrkucPT4DZuOwMGZ2P
V32db1jZjevVElZsc8augmu9blU0QPngB9hzLIXxyqyl8KfvvW/9ylh/tDSkxYGLL1znZ0PDORw0
HzGHw9V/HVe/FsY36YKz8WO5U5MBA7a8smC/qIFb905cQP3UQh/8+ou+QR4kih5h66m9wbJEpwJ8
E2lHD4/qFM3VblND9VvlPhx0LRILxoVQyZs9+fHi8NH7GK79nlzfTV+xEBkDlLm3ShXztovWfj3B
l/FUsb36j9PPv7+dLyciTHPNlnW+BVf/iuqr/v0M7Wb1C8Pa5+L7pLP8OBM0aau+X+cLTHB2AaCw
iHx2OEwZ+xrfQDbszKH26i8z5UgLeDrxCnUW+tFnV7GnP36CaUuvfklFJYXgZbg+Wudz3Dg9NPAE
0oYajgD76bOcPfjlUx1rO3cAjEazA9veIPQXX7yYBSV6WsWJLJrHZ90xaTvoKI+M/vxTbtXTUEH3
Ad/8R+nOlesNIFceBvUfX5Yt1FnIn/PWXOfqLuAmayC0wqM/a5ewWpSgUtDKW/jQ9DqYldlJ/uiv
CLiKK3KzkcCC83dEpu7IRgsvE9qcxKffeMPCiBL0ivzTR6xTWD9e370H2G1YqFo790rYOaca3qFk
0Muzn/p7LjwJQnFB/Qq4T31JBk5D1tYvf36dPsl2N4EL1s/UOqtfMAvuZKLhChjVx9oDvB64sbzZ
xF9avFitT5LshKBfSE9g/Oyj4devcGrJODBvt2wynzsC222CqXFUxoz+5ikbfvyQXZ+rvXggxwTy
tMupqfYCoKufKatOGpBwu0WA0YNogZXX/FkEr2gyxUiA1Bj2+PS6DNF87cQQ4trYYGUMYT/TPjTQ
ratuZNlPpF+eZhLD4bpjRFAvTd8G77qF1Ik/P71dzUibPHTeQxOb+CNnC0yMBB6ypKYHmxgZF8RF
Da1TmmB92fDZ/F2GC/QrOlI3HbW+HtXRgsvnbeKjkzoR9YWshms8U8+sDz3veNcSinxzIGD1r371
GfQ3T8Vubx1cUUebBDZV8sVX6+vp3Ng7EHZSdsE+ixQgILl9QmJ1Z6xKOz1b5w8boN+vqb95McNd
xG+lIHuSecIUtAWM3vYeehrORNCS7MG0zgvgOh8mzPAswNtiuf5dZPiQ2hZb54EcOoY5T/XSVyrx
l09GqBzxPb4Qtz1ZigDJYm3x7XrXweJswAQ9rdxQE4edy/a3QEbr/Awf3Jr9/O4WuTVhK3/O0cyp
1YBWPYdtJCvZHJDKgNW2ZfhynHv3T77i+Jn88UsGN6YWTA9ahff8rgL9vqg34OeHBEuwiabf/JLf
1c9V/2/YWNtXQ179L4pbdc6GI39uofxWMpwJcqrPl08goDap2l+/YuPloi1/9JBiGl/3xw9o5XFs
TnMN5tNGL2GORA7vpcQAUzt9ajhvORHnafXOqHplHIzc6ElYDO8VK8jTh3//bgX817/++ut//W4Y
NO29eK8XA8ZiHv/jv68K/If4H0OTvt9/riGQIX0Wf//z7xsIf3/7tvmO/3ts6+Iz/P3PX7zw567B
32M7pu//9/m/1o/6r3/9HwAAAP//AwBCId2m4CAAAA==
headers:
CF-RAY:
- 93bd2df2cdb6ceb1-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 07 May 2025 02:10:11 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=u.v.Ljv84ep79XydCTMQK.9w88QD56KFcms_QmFTmoA-1746583811-1.0.1.1-VozUy49upqnXzrPGLVSYQim11m9LYuTLcr0cqXGazOI2W4Iq2Vp8sEfeRGcf0HpCOZrHM9r5vdPPk9kwDxJPddltrYDlKF1_.wK0JnRNUos;
path=/; expires=Wed, 07-May-25 02:40:11 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=6WaFjB6rWmnHkFfNPnSRG5da_gR_iACY69uwXj8bWMw-1746583811840-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-allow-origin:
- '*'
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-model:
- text-embedding-3-small
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '123'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
via:
- envoy-router-678b766599-cgwjk
x-envoy-upstream-service-time:
- '98'
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '10000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '9999986'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_97dfa15ce72eff259ad90bd7bc9b5742
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "Your goal is to rewrite the
user query so that it is optimized for retrieval from a vector database. Consider
how the query will be used to find relevant documents, and aim to make it more
specific and context-aware. \n\n Do not include any other text than the rewritten
query, especially any preamble or postamble and only add expected output format
if its relevant to the rewritten query. \n\n Focus on the key words of the intended
task and to retrieve the most relevant information. \n\n There will be some
extra context provided that might need to be removed such as expected_output
formats structured_outputs and other instructions."}, {"role": "user", "content":
"The original query is: What is Brandon''s favorite color?\n\nThis is the expected
criteria for your final answer: Brandon''s favorite color.\nyou MUST return
the actual complete content as the final answer, not a summary.."}], "model":
"gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '992'
content-type:
- application/json
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.68.2
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.68.2
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAAwAAAP//jFLRbtQwEHzPV1j7fEG53JW73uOBKiFOIIRKhVAVufYmMXW8xt5UoOr+
HTm5XlIoEi9+8OyMZ8b7mAkBRsNOgGolq87bfH/98UbGN1f379vDdf3jqj58/vDua/lpf/hy8xYW
iUF331HxE+uVos5bZENuhFVAyZhUl5v164vtarssB6AjjTbRGs/5mvLOOJOXRbnOi02+3J7YLRmF
EXbiWyaEEI/DmXw6jT9hJ4rF002HMcoGYXceEgIC2XQDMkYTWTqGxQQqcoxusL4P0mlyopYPFAyj
UGQpzIcD1n2UybDrrZ0B0jlimQIPNm9PyPFszFLjA93FP6hQG2diWwWUkVwyEZk8DOgxE+J2KKB/
lgl8oM5zxXSPw3PLzWrUg6n3Cb04YUws7Zy0XbwgV2lkaWycNQhKqhb1RJ3qlr02NAOyWei/zbyk
PQY3rvkf+QlQCj2jrnxAbdTzwNNYwLSV/xo7lzwYhojhwSis2GBIH6Gxlr0ddwXir8jYVbVxDQYf
zLgwta+K1WW5LcvisoDsmP0GAAD//wMApUG7jD4DAAA=
headers:
CF-Cache-Status:
- DYNAMIC
CF-RAY:
- 93bd2df8e9db3023-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 07 May 2025 02:10:12 GMT
Server:
- cloudflare
Set-Cookie:
- __cf_bm=NC5Gl3J2PS6v0hkekzpQQDUENehQNq2JMlXGtoZGYKU-1746583812-1.0.1.1-BtPPeA80MGyGPcHeJxrD33q4p.gLUxQIj9GYAavoeX8Cub2CbnppccHh5_9Q3eRqlhxol7evdgkk0kQWUc00eL2cQ5nBiqj8gtewLoqsrFE;
path=/; expires=Wed, 07-May-25 02:40:12 GMT; domain=.api.openai.com; HttpOnly;
Secure; SameSite=None
- _cfuvid=sls5nnOfsQtx13YdRLxgTXu0xxrDa7lhMRbaFqfQXwk-1746583812401-0.0.1.1-604800000;
path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '138'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '140'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999783'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_bd031dddb84a21749dbe09f42b3f8c00
status:
code: 200
message: OK
- request:
body: '{"input": ["Brandon favorite color"], "model": "text-embedding-3-small",
"encoding_format": "base64"}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '101'
content-type:
- application/json
cookie:
- __cf_bm=u.v.Ljv84ep79XydCTMQK.9w88QD56KFcms_QmFTmoA-1746583811-1.0.1.1-VozUy49upqnXzrPGLVSYQim11m9LYuTLcr0cqXGazOI2W4Iq2Vp8sEfeRGcf0HpCOZrHM9r5vdPPk9kwDxJPddltrYDlKF1_.wK0JnRNUos;
_cfuvid=6WaFjB6rWmnHkFfNPnSRG5da_gR_iACY69uwXj8bWMw-1746583811840-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.68.2
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.68.2
x-stainless-read-timeout:
- '600'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/embeddings
response:
body:
string: !!binary |
H4sIAAAAAAAAA1Sa25KyTLelz/+reOM9tf8odpKZ3xkCIghkslOxo6MDBFGQjWwSyBXr3ju0Vqzu
PqmIQgqkyDnGM8fM//jXnz9/27TMb+Pff/78fT2H8e//+BzLkjH5+8+f//mvP3/+/PmP78//78y8
TvMsezbF9/Tvh88my5e///zh/vvI/z3pnz9/N9PuTQ4Hf+mZ/7R0eDmnlBAvcbSec4s3Om1+BLI3
DJktVjKraFTGeZKuRxUs1qpCpJ/VDPO+/dAGo2xjyEXWTHLpbZfLxZvPcN5FgIZZufRrad8FAHQ1
obvD1epZluwidGJRjOfrOeqpc9fOsPJ2Jr1ysaLxBlCecAgFYRKUXrVFf3tTwblhKT2+ljJcLdfa
wAxHD2Lp7xIsfk4keLsPLvFvx3u/ZoapgK4e7iRS29xm0U6qoCnuJaLsak4bNCUw4XouE3oEiaGJ
2TtvoYSgS80avNKhkw8KcgXXIO7751Qu9WuHUfvzjqi9v+raKu+5GSgzJHR3aHTAL5tZQO/UfhK7
I4q9Wg2Y4LwMHQ35cLVno7AqZDLZm8SbzPVzp/fPLdhdQ+oerGu5KuVFh/ezaZL0LTeaMDF1gB5H
jsTlNmG5llh4Q1zXHDk2732/+Aa3QUJtNvSm3pyQTbCpYMEFGfWFjLNnI8BnuaaJOL108ZjyxkE0
YJIiSPXrpUuZZqwVGqKpJPv3cdWWIXsX4DRTn37u17MkfuZoCPY3crwSP2U1P0tIPS0KdfuuCWdj
zqXtGuR7cpQ3tByy5qQintPuWJajjM1yknqwN2pMr95TtwXL6k3w45mM+sYDlqvsXTGSFksgCVEl
bR3CNIBaE1s07I0YcKVzxOASOgcS9ps9E5z0coajZdX00peVxji3beG4e2UkiNtOm7s6kFH+SLd4
4wRZv5QnasCl2V2JGcOmnMW96cF8wh41tgXRODkJA5Qh7kmCatJLxmkOhgfvMZIjUWNN9CNXgGJg
cTQ7vGaNGYjboOa+vqjqLrm2dH6DUYz4huRxzaUsEm8GoDf1SPTrxQoFWT1BeDwfZOpm766fF0sx
EXg74vQ6/GQ2r9jCBiq7G6bmSy1ttpCiQtE1jKmRRDpjslWskPM2JrlyKGczQl0BR3hM8QCArfFL
MKpyYdGcOFp/Yzw67QaERN6l6s7QAENIj9AlF1+YiUJtr7hkHNDzW0jz+cyxxTldPdS73nuaXzhi
dNnrJiy11qV4pxNN8A+qCdNa6qj3qZfl8ti/YZNLEjkTkpesHKMYCS9PpmlQRGAQb6EDm2hsiZKS
M1svrXeDwMk98qn/kg3OWwB9r/lTE77adM5KAcO9fXGJ40qCvaKjnIPHw75Q2+NdIEyxB4FdmDLx
34xqc7nBMoR+qBLDXQPGOZQXoBysP8Ss7xNYJxcW8iE8cmQX+haYfK08A/GSqPQI2ke6cNtAh5mx
xtQylkcoKDWS5LDUAb0B0Guj/3ILqNk/Gba53mK9Yq5PmMRzND2VW6CJuNqpILmoMtl79FgysU5u
8NG9XJpU2Z3NXB6a6FG1Nglb5xFS36MqVPROmOYdR8PR6dwEqpdnQtPP9QUx8I+I3pQjvWZuHorK
5qxAu61mqq/mjzYoaqID3NwexEy1vc3Jy+TA7UvaE6cOzJCv21ZFP3d/T4nwUhhfw5sJFbHtSeD+
bEOKutiB+7nbTIPs6TZfQOTA/fLof9fjUnSWDtIy5afNgndg6Hb6hLKjONIjkff2HHFJDq/Nc0v0
pSzStbwtEpyteaG62uZae9nGJrjWnUPOalWF7Pv9vX0lkEv3frAhs5wbRBbe/lc9cW2SfNcXsTxj
7Gd09yAMDbwjpLsie0HD7Q33WNjRsHOFfjZuzxmxnXGlV8FXQ04+czcYVsKJ6LurW3JK8X7DNfY4
ogWHBsy10ecwFsKcYkm5slmZxQ1scbyluaRcgVhPwAMSvjnUA/uVMZlrhK+fkQDUIljr1ZGhUT0L
DPKYt+eku20gOmR3asr9Hiy+K9dwzZFHld0xKyd5NWuwfakxvfiDoXE42a3oo8+YU4VrOE70PH31
4fM+7zbXjfETfN+vx7rOXp3nDUJWXy1qNOKgLf6gmfB5PeDpp2visPWFIEGmeJCoOnOKzdcwMpEJ
8ivFu6kAPAdnCfkltbGgni2bGSeygf4DLSSuuANYkP+UURXfNiTXGk1buMt7Av2zSYmJUVdyy6Z8
w/phBuTmSmd7SexrDeuGm6jaCGLKLp67gaHh7EgAuFCbcbKbURPRlqrbe5LOxullotkubOI15Vgy
7aUdISi2ESX63Gjztz7JPY7p+RVJNrs4jQmafGdPM3n5YBZFfQP027Sl2mEIU67rlgGdOLyn0Uxu
bPCPuIJsb094QzSHcVhKIlkjuU/2eeHanHJ9Kah8TxfMd1AAbHCeAtQmGNAzvuk9r3AlRJs6e1Bl
x5F0jcxOhaYj7CnpGilslEYzULv/0SZJqtpwLS6cA5dx5GkAYtiP9eMZQ5NJHs0T4NpCfUmPsN3v
zzRyfZct6GQNgCnOQJNGUphY99ENbloHUF/YoX7x84MMR8uup+frsekH+Qxz1BNVx4KkaeFcDMGA
drR+TjKbH5qQPJcBMToME5cOqsYt11MOtOFiT5w2GemieVz7u753b0ZsQbbSGu6Gw0TMOXcAPykS
B2c8Mrw1Tm/GuH5xfvVVjZ31y3cG9DZxQh1leYW1rJ428J1aT3KU0rQU6hBGMDphjd5vwZDOxiYx
Ydlxb+IHfBhyU3RZES+PgB4VTwlpaRoO3MOqnfiPny1cahXA6oUD1Xe8bi/dzpfhS9YPJJHEwOan
+y6RtYOaUiWWc22ZfHyE73uhkatnjCU19LVFrjHuialsbLYO0uOGJHAxiLNbk5LWriZDTOUL1fzt
0K9yUx3FvQsjesiqOlySWjujxHds6tSFVlJD+IngmqiYOHVR9uuyqLP89vkfqpO67mfMsSfSSnCi
ikM0wGUq5sC8OwNCbpMKOIXLV8DdXjVGfTpoc0k6BXqC4OONvFjaWiuKg/zHz/Lh06e9XFrbgwq6
J9N2nyHAau89APH0bukhMymYlaCJIW4jjJH4OJTz0GxnGBM3nDhynLXVOfQOtJ5FRRzG03L1H0CG
xb616C4ci3TE59lEHz6kXz8cnSdZAcOZT0xyVTRenG8FLOS9Q43YbcKloz8rfLS0oPsWPEqGXksi
hu56pIlqPcv5ojYy5DxokjPJrmC9QL2CbAcNcsbYSoXByVrwrcdb4gyMFSswwTI1T7rnXka5ToYg
AVfcFJjPhDRdxPn2hPcUihSv25bNl+ruwSBLbtRQ+qe2GFf/iHZF7k1gf9Vt3vevMTR6DImquY+U
v1BTggXgauoxdy0X7bJ6CFdiMiF/tVKxO7UxBM92Isl1d9YYLp4YmUwtiaNtY3ud2ikA8epYExff
YbpkaqSiXSsb1A2Uqp8z3gtQV+1juuOxVvLF6x2A1a9ievC4qz1rPGrha54rLICrHwrJTo3AaK8j
UZrFBHwn3zBs/EKh0VfPiyGZtkEW30juBKhkH3+BLjEBIeEsa6sY+CZcijOie92Velb49gyTG99R
B4DeXuSFJdDqiEIPhrqzheLCYaTG8YForbNLf99HXrcHmmZWVS4cnGXoV7VE9PWcpAOndQlkhpb+
+nEvN9vo60fEWPVXyjLpKkNeuVn04NUI0HJmDurfdkVdoUt6agGkwLTne6ISCZSdbBkx6l/4SbED
acpkyXjD17E2iP7qC40te8eEhXIF5BBe3A+vtjX86BdRm/amrRPtZTizXCP6crDAsBSpDlO812mO
GyH81cPgPClU83f373qMkUImhnvvegmXBQQqsl97SDN9Z7CVa/cOyDueUkX19oyhnK1o1qD66Sf9
cuEiW4LzMnXkEDKtFy/SCn/5yPrU31qvuoROTuBS27OhtsrNYMJpKCwsVcez/XZwy4GfuO6oot3P
4SjvmwqWtnMmt5g+NJbVIgdPnLMnpzuSwJjo6Qae284klw+/TloPKkguAsHivn6XbJgCjBIf2/hX
D5JRgdBqLyH98sloJbOC+B/jRp0lAP3ECWaOmNtUdM9Zs7Zwa3SDUZz2xOZImIpchiD4+v+3n2CX
fIdRScKeWPcIgFUcVQm+UEiJK3RyP6A4PcP3/amRaN5OJZM5ysFY2UyE6M8erNYam6DfDw+SdfNL
Y5cpf4LojjjMf+qZ1ZciQuE+iqge32/pEIlLgD5/j3/CWbYHvEQTDNXRpbhmbiosb/cIefEZTqBl
Vj9z/KTLPLNWQu4C3y8IOwbcDtWDXLvHSVsvbZzLmiMeqe1rljZ8+tPv9X7XC1eafQwvOf8ih3d/
0WZlP8sotuJqWpM9x2jGMR2y9ljipZUdQBfSVrAwxQXPrvwGU5YFG1hwXkb19SyHS2SGHNwU75UY
s61pi5b6BgTNaya5fBDTxXlNNZyNENG9kJts8X9ED1R369ON5nvt3R03MwwiY0v01Ov7RTmHCUKi
6BLNJzKbar4fYBC6Djk6ZlEuBlAK1EK7mObXbdaYU5sbEL4GFcPrxi8F8QAn6HelTDFY89/6/O2H
OqOstbHzKYZ+fQ5wBYymX5aNJMCPvtDY1Q/hR5/eUAKnXz/sl2hROOjZ6YsakpClawbKAoU7vvjk
F/twUkZWyC9+rKmijX45yBNJ5K8fBzNXaGNxnJ+QnIiJ21S42zNOrBUezz8NnmN5Y9PuhSa459U7
MT58KVwyToUjG15kf/hB9lpvj09QHBsb80GylPNgHGP4fV8oNxR7ySz/jX7OPKH4dX6UQq2YGIYq
dSkJaAV6ZZ8O8MN/uE6eiiZwVR1D/KIHustyzeamQ+fB2EoqclzSNu1LLlEhItsTuV2jO2Dcz3iG
7LDy05NIoP/0dwa63ch1kma5TNn04AU4apFI/T5T2KRFxRuWO5kR8r6/0kk5tzU8qQaazpKA0umj
9yh05IyQ4NF985lCvqcbkdo6DcLV3xoC/OgJcaqrYS9LUQTQtSIHyxpnlYPvvmIYDkmOt/fnxW6n
11aAHpavE1R+inKd/PQMH43IqKrgM5uKbVmj/kEnzHvoxQYtfw5oabTr5/lLe5HDpwCF6up++Not
eTl8C3A3/KR4mP06HJezLcCTmI5k500nMDv+6IFv/34VA7Fk05AEcFcHP/S4Ddue+ZehhX0vb6bZ
2ZnlirAfgCpoySTuuRdjhTvA7chVASEZClM6HXQd7ob9NLHDwNJZCWgC76cgxZKcvfuyvLYBHHdN
Ro7AOTJWCP4G9kaFSZi7WiiU4wEDj6wGUZiop2udLBB9v6/dm2q6dAIfQ9nXXpQI1jtch8STYXVp
/E99D2DM1Ju6rc60wpU2GaEgzo8JGYPekaipnuF6gU4FWxCyCejILcXLWxzk7MiPEwj0PF2ntvYA
b6rB1PSnlk1J7T1hapkqPctHhYlY9d/oZHUGSVRL7ZlzkBJoj+WKF13gezrlFxX2usARo0n5fimb
nYk+PDaBoODAmOA5Rpiqb7ITSMzGSbid4RD8WB/e1PpuAMxA237iiO6Oesj5Bp2BVj9v1Eieij0p
OzrBy1UuyTf/m30azeh5q1Rqt8wqh0U9PmGT2Tn9+jPt5uAITRgZdM/XKRuNrr7Bx1Na8OnL3/Ke
VlAYp3niCPdg68XoDHlbHXui1vacrmhW3ggd7veP3wnhb322XHOZttxRB5yxSY4AHY0ac+vqgdW/
3G/gmXAtVRXJ7Mehao9Qz+qaHp3xnlJHOHvyh68xyreJPRYHfwDxfKP49ckTf3k1Cm8dzStvGy7l
1ZVkZj0JnhO8K5myg/KXV4k+9yyduVAYYG+XHl7j1rLF4Q1ioNmHmTjgzpV08tsCNjG+Tclr0VL2
8QPEG55EVOXthqsmeCq8ZQcD/3jCs2TWT8h9+2Nid1z+yWdSc/tdr/tMe4RrtD8633yGkrc2gSEr
BQeWRXkguCEaY4WvrejbX6mxoKcrp4oq0MjNJ7vczzQaba4D5Pl1S63A7bUBpasJcfkzks//J1y1
9jbDmbyKaUPuWrpmkjOB/E1vRMWdbd+d5/P49R+iffKOZXoWzq/feg4pwUcvIpCawemT/7y0pbwN
A/z4BXF5QennpQh12Fx1i0QfPhATimIQpfIdb0UdhsulqnL05bt9HiyMF6+7GtHrVaOfvNeehx9n
gle6ofSTv2kLXh4S2ssixsv98goX4ySfZfX8HvE26B7lXNP4BqUVeOQYKwoTcBO0oDD5hRy3D439
5mGf/HsaHFFhwiXJHPDxW7x88l6W3HYBaJEsU/2V6WBRsqsif/ickK6J04HjJwNwd2ecZBYdy7XD
pwo+E6GlVv54gD65WcE3v5rkT/49FNprgpIzrCRmXAJ++TPIPQuz3pDYWnKOIGvuIFJNr5SSF29t
ApA0yMSUs2O5GKf1jDKnORBHVk2w4LN0hId7//PJ+/meZllrysMtGCbe2DSA4etQgY+/Y+ik73CW
f7obTPFmwXOi1CFLZJ9D17epTN/1/9FXD37nJfMyG0B0olqGUWLvibJ1vJJZyf4NkrzR6O7jT+MS
vBT4KNecujpRbf7iXp9Q2cZ7emmrbTng83sDP/OaTx71Yot4tSq4mcDlm0fbU3e4Q+icTxeqHeTp
9/lgsfNbYla10y9W70awRZKMN/JpLZfp2Tog8vgndZYpsAVcZArkud2dHhd31NbsCk0QWmk3gffQ
s9WHr/Y3j/ny4FjkQwt/rvmZONJlx3i8dDL8ya8x3ub7Pl2VvfFEjyJ8//I5Q/pRgZ/rEfzJo5gf
uRz45NsYcXMcrpn6cNCHB/Hdczw2fngMbh7FnVwMdafNfo8gHE61RzRPeYfMqt467DV0oLvQ79h8
cZ0IfuZV+OFNJ7Z+81138XRq3RI9FOUqKWAGSEow5v2SyVXyhPb4WDGULg8wD31cAUlLCfnkEzYr
TQPD9Wo+pllV3+UiN+fNt/+nzsfPh1pzWnA/eSlxDbAJZ+tR5CjJ6JmoCXqw8aN3v/Ofz/vu11ox
Hfj2xZ/f3+fBVVRkSmIwSalfpNNHr4F3LCW83fdX7XM/CMg9iacmZwJg8vkSQOdCdOqwhktnK3kK
KIhgTa6ZuwkX7vKcYHN6negu95H2nmTzDEe3ONBox1f2WkRZAjZvTqVpXnsp07RwBV31sydm6ivp
gp1wQvegj7CU2JI2cfTIfXkMT/JBDL95A2xXEWF6m55s8R/TANgjP2AWVmHPMgfrMH+G9YcfWLpG
7zgBpoheuL8BKxQKdIxhgSqF+v5xCN/JPZHhUtsDFmrnZa8TOw5wnjlIQ07flZyPPAU1oQjo8ZoN
/axdXgbYvBqOkj74CanmShjOW2/FYoftkJts04ASX1zoaR8WYHBuuwmB4yTgz/V6cZgCB3znR3H8
0fbyGhpoqjbKZ761hEP5DlbkuccfvFn7sVxqGB2ROV9v1GScDJaO5TX46qe130bhrDStB/NKU6j1
tmuw+P41ga4in6clv0vpMiT2AI3egdSp7CNYcHg9S988ANcWKDtHNN/wXA4GPX3yk3nS1Ru6+PlI
DUad8F1uugC8cJd+5omFtnBWk4OPf1E94Xht+tXHW61i/uBo9od/Jrif+w3+5imf+acKwyHOySc/
T5lyJRxgzijSfa6fy0WLwhv8ud7OVK8Y05iWu08ZYQtg9t5rPe8f0xV+n5e8x6KnIhoT+OWxSf6p
0jHpniY8XEWPOMoJs6XcyfCbP5Jv3rDWeTxD6fgTE5PVP+V4oYqMaBLMxHDPMGw57RGjvszM6cfv
YL/WIRfBGCKZqC96ZUxpbAO6mzekrkifgJelrQojfyTUqH9+NJa9zy0ybRjTfSCYGofB8ju/IlHF
QnspDtdJdkVYEO9Tz7PfXkz4zRdU9RSl/KDOMxihmZJY3j60ZVpRAS/J6n3rIRT9aM+hx2jsiNKU
Yz9zB9OB1BdkYuk3sxczyZeRE3gqucleZX/5ELrOgyNmFS/h1z+gd3xI3/mNxsnZaqAP/1Asly5Y
luvzjc7NktJA8jpA8Xk/Qw3XFfk+3+If0xlkxMEkSB59OCKs63BIkx+Cq4GCD88c4W8/36eOvTjP
w/yb97rcLKWUk5oBfvTj6zc951DEQaFHZ/zlw8GPegX+/e4K+M9//fnzv747DOo2y1+fjQFjvoz/
/u+tAv8W/z3Uyev1uw1hGpIi//vPf+1A+Nv1bd2N/3tsq7wZ/v7zR/zdavB3bMfk9f8c/tfnRv/5
r/8DAAD//wMAhvFupN4gAAA=
headers:
CF-RAY:
- 93bd2dfc5889ceb1-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 07 May 2025 02:10:13 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-allow-origin:
- '*'
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-model:
- text-embedding-3-small
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '189'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
via:
- envoy-router-6b78fbf94c-rkptb
x-envoy-upstream-service-time:
- '192'
x-ratelimit-limit-requests:
- '10000'
x-ratelimit-limit-tokens:
- '10000000'
x-ratelimit-remaining-requests:
- '9999'
x-ratelimit-remaining-tokens:
- '9999994'
x-ratelimit-reset-requests:
- 6ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_91abc313f74bce8daaf5f8d411143f28
status:
code: 200
message: OK
- request:
body: '{"messages": [{"role": "system", "content": "You are Information Agent.
You have access to specific knowledge sources.\nYour personal goal is: Provide
information based on knowledge sources\nTo give my best complete final answer
to the task respond using the exact following format:\n\nThought: I now can
give a great answer\nFinal Answer: Your final answer must be the great and the
most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
What is Brandon''s favorite color?\n\nThis is the expected criteria for your
final answer: Brandon''s favorite color.\nyou MUST return the actual complete
content as the final answer, not a summary.Additional Information: Brandon''s
favorite color is red and he likes Mexican food.\n\nBegin! This is VERY important
to you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}], "model": "gpt-4o-mini", "stop": ["\nObservation:"]}'
headers:
accept:
- application/json
accept-encoding:
- gzip, deflate
connection:
- keep-alive
content-length:
- '1008'
content-type:
- application/json
cookie:
- __cf_bm=NC5Gl3J2PS6v0hkekzpQQDUENehQNq2JMlXGtoZGYKU-1746583812-1.0.1.1-BtPPeA80MGyGPcHeJxrD33q4p.gLUxQIj9GYAavoeX8Cub2CbnppccHh5_9Q3eRqlhxol7evdgkk0kQWUc00eL2cQ5nBiqj8gtewLoqsrFE;
_cfuvid=sls5nnOfsQtx13YdRLxgTXu0xxrDa7lhMRbaFqfQXwk-1746583812401-0.0.1.1-604800000
host:
- api.openai.com
user-agent:
- OpenAI/Python 1.68.2
x-stainless-arch:
- arm64
x-stainless-async:
- 'false'
x-stainless-lang:
- python
x-stainless-os:
- MacOS
x-stainless-package-version:
- 1.68.2
x-stainless-raw-response:
- 'true'
x-stainless-read-timeout:
- '600.0'
x-stainless-retry-count:
- '0'
x-stainless-runtime:
- CPython
x-stainless-runtime-version:
- 3.12.9
method: POST
uri: https://api.openai.com/v1/chat/completions
response:
body:
string: !!binary |
H4sIAAAAAAAAA4xSTW/bMAy9+1cQuuwSF7aTLYlv66FDTz1twz4Kg5FoR60sCpKSbi3y3wc5aex2
HbCLAfPxUe898ikDEFqJGoTcYpS9M/nl55uvm+J+effti68qGa6+4/pT+Yjba3nzKGaJwZs7kvGZ
dSG5d4aiZnuEpSeMlKaWy8WH96v5qpwPQM+KTKJ1LuYLznttdV4V1SIvlnm5OrG3rCUFUcOPDADg
afgmnVbRL1FDMXuu9BQCdiTqcxOA8GxSRWAIOkS0UcxGULKNZAfp12D5ASRa6PSeAKFLsgFteCAP
8NNeaYsGPg7/NVx6tIrtuwAt7tnrSCDZsAcdwJO6mL7iqd0FTE7tzpgJgNZyxJTU4O/2hBzOjgx3
zvMmvKKKVlsdto0nDGyT+hDZiQE9ZAC3Q3K7F2EI57l3sYl8T8Nz5Wp+nCfGhU3Q9QmMHNGM9aqo
Zm/MaxRF1CZMshcS5ZbUSB0XhTuleQJkE9d/q3lr9tG5tt3/jB8BKclFUo3zpLR86Xhs85Tu+V9t
55QHwSKQ32tJTdTk0yYUtbgzxysT4XeI1Detth155/Xx1FrXFPN1taqqYl2I7JD9AQAA//8DACIr
2O54AwAA
headers:
CF-RAY:
- 93bd2dffffbc3023-SJC
Connection:
- keep-alive
Content-Encoding:
- gzip
Content-Type:
- application/json
Date:
- Wed, 07 May 2025 02:10:13 GMT
Server:
- cloudflare
Transfer-Encoding:
- chunked
X-Content-Type-Options:
- nosniff
access-control-expose-headers:
- X-Request-ID
alt-svc:
- h3=":443"; ma=86400
cf-cache-status:
- DYNAMIC
openai-organization:
- crewai-iuxna1
openai-processing-ms:
- '334'
openai-version:
- '2020-10-01'
strict-transport-security:
- max-age=31536000; includeSubDomains; preload
x-envoy-upstream-service-time:
- '336'
x-ratelimit-limit-requests:
- '30000'
x-ratelimit-limit-tokens:
- '150000000'
x-ratelimit-remaining-requests:
- '29999'
x-ratelimit-remaining-tokens:
- '149999782'
x-ratelimit-reset-requests:
- 2ms
x-ratelimit-reset-tokens:
- 0s
x-request-id:
- req_ceae74c516df806c888d819e14ca9da3
status:
code: 200
message: OK
- request:
body: '{"trace_id": "5a473660-de8d-4c03-a05b-3d0e38cfaf2b", "execution_type":
"crew", "user_identifier": null, "execution_context": {"crew_fingerprint": null,
"crew_name": "crew", "flow_name": null, "crewai_version": "0.193.2", "privacy_level":
"standard"}, "execution_metadata": {"expected_duration_estimate": 300, "agent_count":
0, "task_count": 0, "flow_method_count": 0, "execution_started_at": "2025-09-23T20:49:30.429662+00:00"},
"ephemeral_trace_id": "5a473660-de8d-4c03-a05b-3d0e38cfaf2b"}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '490'
Content-Type:
- application/json
User-Agent:
- CrewAI-CLI/0.193.2
X-Crewai-Version:
- 0.193.2
method: POST
uri: http://localhost:3000/crewai_plus/api/v1/tracing/ephemeral/batches
response:
body:
string: '{"id":"73b8ab8e-2462-45ea-bea6-8397197bfa95","ephemeral_trace_id":"5a473660-de8d-4c03-a05b-3d0e38cfaf2b","execution_type":"crew","crew_name":"crew","flow_name":null,"status":"running","duration_ms":null,"crewai_version":"0.193.2","total_events":0,"execution_context":{"crew_fingerprint":null,"crew_name":"crew","flow_name":null,"crewai_version":"0.193.2","privacy_level":"standard"},"created_at":"2025-09-23T20:49:30.477Z","updated_at":"2025-09-23T20:49:30.477Z","access_code":"TRACE-e7ac143cef","user_identifier":null}'
headers:
Content-Length:
- '519'
cache-control:
- max-age=0, private, must-revalidate
content-security-policy:
- 'default-src ''self'' *.crewai.com crewai.com; script-src ''self'' ''unsafe-inline''
*.crewai.com crewai.com https://cdn.jsdelivr.net/npm/apexcharts https://www.gstatic.com
https://run.pstmn.io https://share.descript.com/; style-src ''self'' ''unsafe-inline''
*.crewai.com crewai.com https://cdn.jsdelivr.net/npm/apexcharts; img-src ''self''
data: *.crewai.com crewai.com https://zeus.tools.crewai.com https://dashboard.tools.crewai.com
https://cdn.jsdelivr.net; font-src ''self'' data: *.crewai.com crewai.com;
connect-src ''self'' *.crewai.com crewai.com https://zeus.tools.crewai.com
https://connect.useparagon.com/ https://zeus.useparagon.com/* https://*.useparagon.com/*
https://run.pstmn.io https://connect.tools.crewai.com/ ws://localhost:3036
wss://localhost:3036; frame-src ''self'' *.crewai.com crewai.com https://connect.useparagon.com/
https://zeus.tools.crewai.com https://zeus.useparagon.com/* https://connect.tools.crewai.com/
https://www.youtube.com https://share.descript.com'
content-type:
- application/json; charset=utf-8
etag:
- W/"62cedfc7eafa77605b47b4c6ef2e0ba8"
permissions-policy:
- camera=(), microphone=(self), geolocation=()
referrer-policy:
- strict-origin-when-cross-origin
server-timing:
- cache_read.active_support;dur=0.08, sql.active_record;dur=13.45, cache_generate.active_support;dur=2.56,
cache_write.active_support;dur=0.15, cache_read_multi.active_support;dur=0.08,
start_processing.action_controller;dur=0.00, start_transaction.active_record;dur=0.00,
transaction.active_record;dur=10.22, process_action.action_controller;dur=14.44
vary:
- Accept
x-content-type-options:
- nosniff
x-frame-options:
- SAMEORIGIN
x-permitted-cross-domain-policies:
- none
x-request-id:
- a7c1304c-dee7-4be0-bcb2-df853c3f86f7
x-runtime:
- '0.051387'
x-xss-protection:
- 1; mode=block
status:
code: 201
message: Created
- request:
body: '{"events": [{"event_id": "d33b112d-9b68-470d-be50-ea8c10e8ca7e", "timestamp":
"2025-09-23T20:49:30.484390+00:00", "type": "crew_kickoff_started", "event_data":
{"timestamp": "2025-09-23T20:49:30.428470+00:00", "type": "crew_kickoff_started",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_id": null, "task_name": null, "agent_id": null, "agent_role": null, "crew_name":
"crew", "crew": null, "inputs": null}}, {"event_id": "cff1f459-bf86-485a-bc4b-b90f72f88622",
"timestamp": "2025-09-23T20:49:30.485842+00:00", "type": "task_started", "event_data":
{"task_description": "What is Brandon''s favorite color?", "expected_output":
"Brandon''s favorite color.", "task_name": "What is Brandon''s favorite color?",
"context": "", "agent_role": "Information Agent", "task_id": "0305e5ec-8f86-441a-b17e-ec03979c4f40"}},
{"event_id": "f5b196fd-bf4e-46cc-a3dd-a0abacf78461", "timestamp": "2025-09-23T20:49:30.485966+00:00",
"type": "llm_call_started", "event_data": {"timestamp": "2025-09-23T20:49:30.485945+00:00",
"type": "llm_call_started", "source_fingerprint": null, "source_type": null,
"fingerprint_metadata": null, "task_id": null, "task_name": null, "agent_id":
null, "agent_role": null, "from_task": null, "from_agent": null, "model": "gpt-4o-mini",
"messages": [{"role": "system", "content": "Your goal is to rewrite the user
query so that it is optimized for retrieval from a vector database. Consider
how the query will be used to find relevant documents, and aim to make it more
specific and context-aware. \n\n Do not include any other text than the rewritten
query, especially any preamble or postamble and only add expected output format
if its relevant to the rewritten query. \n\n Focus on the key words of the intended
task and to retrieve the most relevant information. \n\n There will be some
extra context provided that might need to be removed such as expected_output
formats structured_outputs and other instructions."}, {"role": "user", "content":
"The original query is: What is Brandon''s favorite color?\n\nThis is the expected
criteria for your final answer: Brandon''s favorite color.\nyou MUST return
the actual complete content as the final answer, not a summary.."}], "tools":
null, "callbacks": null, "available_functions": null}}, {"event_id": "97f3e7b4-2ff7-4826-bd93-ec4a285ac60a",
"timestamp": "2025-09-23T20:49:30.487319+00:00", "type": "llm_call_completed",
"event_data": {"timestamp": "2025-09-23T20:49:30.487295+00:00", "type": "llm_call_completed",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_id": null, "task_name": null, "agent_id": null, "agent_role": null, "from_task":
null, "from_agent": null, "messages": [{"role": "system", "content": "Your goal
is to rewrite the user query so that it is optimized for retrieval from a vector
database. Consider how the query will be used to find relevant documents, and
aim to make it more specific and context-aware. \n\n Do not include any other
text than the rewritten query, especially any preamble or postamble and only
add expected output format if its relevant to the rewritten query. \n\n Focus
on the key words of the intended task and to retrieve the most relevant information.
\n\n There will be some extra context provided that might need to be removed
such as expected_output formats structured_outputs and other instructions."},
{"role": "user", "content": "The original query is: What is Brandon''s favorite
color?\n\nThis is the expected criteria for your final answer: Brandon''s favorite
color.\nyou MUST return the actual complete content as the final answer, not
a summary.."}], "response": "Brandon favorite color", "call_type": "<LLMCallType.LLM_CALL:
''llm_call''>", "model": "gpt-4o-mini"}}, {"event_id": "ae65649b-87ad-4378-9ee1-2c5edf2e9573",
"timestamp": "2025-09-23T20:49:30.487828+00:00", "type": "agent_execution_started",
"event_data": {"agent_role": "Information Agent", "agent_goal": "Provide information
based on knowledge sources", "agent_backstory": "You have access to specific
knowledge sources."}}, {"event_id": "69fa8d11-63df-4118-8607-6f5328dad0c5",
"timestamp": "2025-09-23T20:49:30.487905+00:00", "type": "llm_call_started",
"event_data": {"timestamp": "2025-09-23T20:49:30.487889+00:00", "type": "llm_call_started",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_id": "0305e5ec-8f86-441a-b17e-ec03979c4f40", "task_name": "What is Brandon''s
favorite color?", "agent_id": null, "agent_role": null, "from_task": null, "from_agent":
null, "model": "gpt-4o-mini", "messages": [{"role": "system", "content": "You
are Information Agent. You have access to specific knowledge sources.\nYour
personal goal is: Provide information based on knowledge sources\nTo give my
best complete final answer to the task respond using the exact following format:\n\nThought:
I now can give a great answer\nFinal Answer: Your final answer must be the great
and the most complete as possible, it must be outcome described.\n\nI MUST use
these formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent
Task: What is Brandon''s favorite color?\n\nThis is the expected criteria for
your final answer: Brandon''s favorite color.\nyou MUST return the actual complete
content as the final answer, not a summary.\n\nBegin! This is VERY important
to you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}], "tools": null, "callbacks": ["<crewai.utilities.token_counter_callback.TokenCalcHandler
object at 0x13513f080>"], "available_functions": null}}, {"event_id": "559890e0-ceea-4812-96a9-df25b86210d0",
"timestamp": "2025-09-23T20:49:30.488945+00:00", "type": "llm_call_completed",
"event_data": {"timestamp": "2025-09-23T20:49:30.488926+00:00", "type": "llm_call_completed",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_id": "0305e5ec-8f86-441a-b17e-ec03979c4f40", "task_name": "What is Brandon''s
favorite color?", "agent_id": null, "agent_role": null, "from_task": null, "from_agent":
null, "messages": [{"role": "system", "content": "You are Information Agent.
You have access to specific knowledge sources.\nYour personal goal is: Provide
information based on knowledge sources\nTo give my best complete final answer
to the task respond using the exact following format:\n\nThought: I now can
give a great answer\nFinal Answer: Your final answer must be the great and the
most complete as possible, it must be outcome described.\n\nI MUST use these
formats, my job depends on it!"}, {"role": "user", "content": "\nCurrent Task:
What is Brandon''s favorite color?\n\nThis is the expected criteria for your
final answer: Brandon''s favorite color.\nyou MUST return the actual complete
content as the final answer, not a summary.\n\nBegin! This is VERY important
to you, use the tools available and give your best Final Answer, your job depends
on it!\n\nThought:"}], "response": "I now can give a great answer \nFinal Answer:
Brandon''s favorite color is red.", "call_type": "<LLMCallType.LLM_CALL: ''llm_call''>",
"model": "gpt-4o-mini"}}, {"event_id": "1fea1502-387c-4456-b057-528f589f3946",
"timestamp": "2025-09-23T20:49:30.489060+00:00", "type": "agent_execution_completed",
"event_data": {"agent_role": "Information Agent", "agent_goal": "Provide information
based on knowledge sources", "agent_backstory": "You have access to specific
knowledge sources."}}, {"event_id": "c0848a77-a641-4be8-8c0a-ef6c7bce2ce3",
"timestamp": "2025-09-23T20:49:30.489105+00:00", "type": "task_completed", "event_data":
{"task_description": "What is Brandon''s favorite color?", "task_name": "What
is Brandon''s favorite color?", "task_id": "0305e5ec-8f86-441a-b17e-ec03979c4f40",
"output_raw": "Brandon''s favorite color is red.", "output_format": "OutputFormat.RAW",
"agent_role": "Information Agent"}}, {"event_id": "278e4853-3297-46c2-ba0f-3456c93cd50d",
"timestamp": "2025-09-23T20:49:30.490117+00:00", "type": "crew_kickoff_completed",
"event_data": {"timestamp": "2025-09-23T20:49:30.490098+00:00", "type": "crew_kickoff_completed",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_id": null, "task_name": null, "agent_id": null, "agent_role": null, "crew_name":
"crew", "crew": null, "output": {"description": "What is Brandon''s favorite
color?", "name": "What is Brandon''s favorite color?", "expected_output": "Brandon''s
favorite color.", "summary": "What is Brandon''s favorite color?...", "raw":
"Brandon''s favorite color is red.", "pydantic": null, "json_dict": null, "agent":
"Information Agent", "output_format": "raw"}, "total_tokens": 380}}], "batch_metadata":
{"events_count": 10, "batch_sequence": 1, "is_final_batch": false}}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '8758'
Content-Type:
- application/json
User-Agent:
- CrewAI-CLI/0.193.2
X-Crewai-Version:
- 0.193.2
method: POST
uri: http://localhost:3000/crewai_plus/api/v1/tracing/ephemeral/batches/5a473660-de8d-4c03-a05b-3d0e38cfaf2b/events
response:
body:
string: '{"events_created":10,"ephemeral_trace_batch_id":"73b8ab8e-2462-45ea-bea6-8397197bfa95"}'
headers:
Content-Length:
- '87'
cache-control:
- max-age=0, private, must-revalidate
content-security-policy:
- 'default-src ''self'' *.crewai.com crewai.com; script-src ''self'' ''unsafe-inline''
*.crewai.com crewai.com https://cdn.jsdelivr.net/npm/apexcharts https://www.gstatic.com
https://run.pstmn.io https://share.descript.com/; style-src ''self'' ''unsafe-inline''
*.crewai.com crewai.com https://cdn.jsdelivr.net/npm/apexcharts; img-src ''self''
data: *.crewai.com crewai.com https://zeus.tools.crewai.com https://dashboard.tools.crewai.com
https://cdn.jsdelivr.net; font-src ''self'' data: *.crewai.com crewai.com;
connect-src ''self'' *.crewai.com crewai.com https://zeus.tools.crewai.com
https://connect.useparagon.com/ https://zeus.useparagon.com/* https://*.useparagon.com/*
https://run.pstmn.io https://connect.tools.crewai.com/ ws://localhost:3036
wss://localhost:3036; frame-src ''self'' *.crewai.com crewai.com https://connect.useparagon.com/
https://zeus.tools.crewai.com https://zeus.useparagon.com/* https://connect.tools.crewai.com/
https://www.youtube.com https://share.descript.com'
content-type:
- application/json; charset=utf-8
etag:
- W/"f467d241acdc3eb80717680fc1a8e139"
permissions-policy:
- camera=(), microphone=(self), geolocation=()
referrer-policy:
- strict-origin-when-cross-origin
server-timing:
- cache_read.active_support;dur=0.06, sql.active_record;dur=30.49, cache_generate.active_support;dur=2.38,
cache_write.active_support;dur=0.12, cache_read_multi.active_support;dur=0.09,
start_processing.action_controller;dur=0.00, instantiation.active_record;dur=0.04,
start_transaction.active_record;dur=0.00, transaction.active_record;dur=69.93,
process_action.action_controller;dur=75.35
vary:
- Accept
x-content-type-options:
- nosniff
x-frame-options:
- SAMEORIGIN
x-permitted-cross-domain-policies:
- none
x-request-id:
- 8d615fb0-08c9-4258-aabe-e551d01dc139
x-runtime:
- '0.101789'
x-xss-protection:
- 1; mode=block
status:
code: 200
message: OK
- request:
body: '{"status": "completed", "duration_ms": 170, "final_event_count": 10}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '68'
Content-Type:
- application/json
User-Agent:
- CrewAI-CLI/0.193.2
X-Crewai-Version:
- 0.193.2
method: PATCH
uri: http://localhost:3000/crewai_plus/api/v1/tracing/ephemeral/batches/5a473660-de8d-4c03-a05b-3d0e38cfaf2b/finalize
response:
body:
string: '{"id":"73b8ab8e-2462-45ea-bea6-8397197bfa95","ephemeral_trace_id":"5a473660-de8d-4c03-a05b-3d0e38cfaf2b","execution_type":"crew","crew_name":"crew","flow_name":null,"status":"completed","duration_ms":170,"crewai_version":"0.193.2","total_events":10,"execution_context":{"crew_name":"crew","flow_name":null,"privacy_level":"standard","crewai_version":"0.193.2","crew_fingerprint":null},"created_at":"2025-09-23T20:49:30.477Z","updated_at":"2025-09-23T20:49:30.631Z","access_code":"TRACE-e7ac143cef","user_identifier":null}'
headers:
Content-Length:
- '521'
cache-control:
- max-age=0, private, must-revalidate
content-security-policy:
- 'default-src ''self'' *.crewai.com crewai.com; script-src ''self'' ''unsafe-inline''
*.crewai.com crewai.com https://cdn.jsdelivr.net/npm/apexcharts https://www.gstatic.com
https://run.pstmn.io https://share.descript.com/; style-src ''self'' ''unsafe-inline''
*.crewai.com crewai.com https://cdn.jsdelivr.net/npm/apexcharts; img-src ''self''
data: *.crewai.com crewai.com https://zeus.tools.crewai.com https://dashboard.tools.crewai.com
https://cdn.jsdelivr.net; font-src ''self'' data: *.crewai.com crewai.com;
connect-src ''self'' *.crewai.com crewai.com https://zeus.tools.crewai.com
https://connect.useparagon.com/ https://zeus.useparagon.com/* https://*.useparagon.com/*
https://run.pstmn.io https://connect.tools.crewai.com/ ws://localhost:3036
wss://localhost:3036; frame-src ''self'' *.crewai.com crewai.com https://connect.useparagon.com/
https://zeus.tools.crewai.com https://zeus.useparagon.com/* https://connect.tools.crewai.com/
https://www.youtube.com https://share.descript.com'
content-type:
- application/json; charset=utf-8
etag:
- W/"71b47fd1cf30771f0605bb4c77577c2f"
permissions-policy:
- camera=(), microphone=(self), geolocation=()
referrer-policy:
- strict-origin-when-cross-origin
server-timing:
- cache_read.active_support;dur=0.10, cache_fetch_hit.active_support;dur=0.00,
cache_read_multi.active_support;dur=0.07, start_processing.action_controller;dur=0.00,
sql.active_record;dur=7.47, instantiation.active_record;dur=0.03, unpermitted_parameters.action_controller;dur=0.00,
start_transaction.active_record;dur=0.00, transaction.active_record;dur=4.44,
process_action.action_controller;dur=10.94
vary:
- Accept
x-content-type-options:
- nosniff
x-frame-options:
- SAMEORIGIN
x-permitted-cross-domain-policies:
- none
x-request-id:
- 0f5e3242-5478-4d7f-9d5d-84ac009cb38d
x-runtime:
- '0.028980'
x-xss-protection:
- 1; mode=block
status:
code: 200
message: OK
- request:
body: '{"trace_id": "54a8adea-c972-420f-a708-1a544eff9635", "execution_type":
"crew", "user_identifier": null, "execution_context": {"crew_fingerprint": null,
"crew_name": "crew", "flow_name": null, "crewai_version": "0.193.2", "privacy_level":
"standard"}, "execution_metadata": {"expected_duration_estimate": 300, "agent_count":
0, "task_count": 0, "flow_method_count": 0, "execution_started_at": "2025-09-24T05:24:12.861068+00:00"}}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '428'
Content-Type:
- application/json
User-Agent:
- CrewAI-CLI/0.193.2
X-Crewai-Organization-Id:
- d3a3d10c-35db-423f-a7a4-c026030ba64d
X-Crewai-Version:
- 0.193.2
method: POST
uri: http://localhost:3000/crewai_plus/api/v1/tracing/batches
response:
body:
string: '{"id":"61db142f-783b-4fd1-9aa3-6a3a004dcd01","trace_id":"54a8adea-c972-420f-a708-1a544eff9635","execution_type":"crew","crew_name":"crew","flow_name":null,"status":"running","duration_ms":null,"crewai_version":"0.193.2","privacy_level":"standard","total_events":0,"execution_context":{"crew_fingerprint":null,"crew_name":"crew","flow_name":null,"crewai_version":"0.193.2","privacy_level":"standard"},"created_at":"2025-09-24T05:24:13.678Z","updated_at":"2025-09-24T05:24:13.678Z"}'
headers:
Content-Length:
- '480'
cache-control:
- max-age=0, private, must-revalidate
content-security-policy:
- 'default-src ''self'' *.crewai.com crewai.com; script-src ''self'' ''unsafe-inline''
*.crewai.com crewai.com https://cdn.jsdelivr.net/npm/apexcharts https://www.gstatic.com
https://run.pstmn.io https://share.descript.com/; style-src ''self'' ''unsafe-inline''
*.crewai.com crewai.com https://cdn.jsdelivr.net/npm/apexcharts; img-src ''self''
data: *.crewai.com crewai.com https://zeus.tools.crewai.com https://dashboard.tools.crewai.com
https://cdn.jsdelivr.net; font-src ''self'' data: *.crewai.com crewai.com;
connect-src ''self'' *.crewai.com crewai.com https://zeus.tools.crewai.com
https://connect.useparagon.com/ https://zeus.useparagon.com/* https://*.useparagon.com/*
https://run.pstmn.io https://connect.tools.crewai.com/ ws://localhost:3036
wss://localhost:3036; frame-src ''self'' *.crewai.com crewai.com https://connect.useparagon.com/
https://zeus.tools.crewai.com https://zeus.useparagon.com/* https://connect.tools.crewai.com/
https://www.youtube.com https://share.descript.com'
content-type:
- application/json; charset=utf-8
etag:
- W/"bef69fc49b08b5ac7bb3eac00e96085a"
permissions-policy:
- camera=(), microphone=(self), geolocation=()
referrer-policy:
- strict-origin-when-cross-origin
server-timing:
- cache_read.active_support;dur=0.05, sql.active_record;dur=24.34, cache_generate.active_support;dur=1.98,
cache_write.active_support;dur=0.12, cache_read_multi.active_support;dur=0.09,
start_processing.action_controller;dur=0.00, instantiation.active_record;dur=0.56,
feature_operation.flipper;dur=0.11, start_transaction.active_record;dur=0.01,
transaction.active_record;dur=6.41, process_action.action_controller;dur=793.70
vary:
- Accept
x-content-type-options:
- nosniff
x-frame-options:
- SAMEORIGIN
x-permitted-cross-domain-policies:
- none
x-request-id:
- 1fc54a38-7fa9-4fbd-9adc-5a67f11c6fc2
x-runtime:
- '0.820447'
x-xss-protection:
- 1; mode=block
status:
code: 201
message: Created
- request:
body: '{"events": [{"event_id": "71c92873-7e03-4150-bc17-c6840ee49538", "timestamp":
"2025-09-24T05:24:13.685702+00:00", "type": "crew_kickoff_started", "event_data":
{"timestamp": "2025-09-24T05:24:12.858951+00:00", "type": "crew_kickoff_started",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_id": null, "task_name": null, "agent_id": null, "agent_role": null, "crew_name":
"crew", "crew": null, "inputs": null}}, {"event_id": "e619fc6f-2dd4-4520-abbd-ac4e52f992ca",
"timestamp": "2025-09-24T05:24:13.691993+00:00", "type": "task_started", "event_data":
{"task_description": "What is Brandon''s favorite color?", "expected_output":
"Brandon''s favorite color.", "task_name": "What is Brandon''s favorite color?",
"context": "", "agent_role": "Information Agent", "task_id": "a89d3b30-df0d-4107-a477-ef54077c6833"}},
{"event_id": "8fae8f69-b0a5-426e-802c-a3b2e5b018db", "timestamp": "2025-09-24T05:24:13.692473+00:00",
"type": "llm_call_started", "event_data": {"timestamp": "2025-09-24T05:24:13.692433+00:00",
"type": "llm_call_started", "source_fingerprint": null, "source_type": null,
"fingerprint_metadata": null, "task_id": null, "task_name": null, "agent_id":
null, "agent_role": null, "from_task": null, "from_agent": null, "model": "gpt-4o-mini",
"messages": [{"role": "system", "content": "Your goal is to rewrite the user
query so that it is optimized for retrieval from a vector database. Consider
how the query will be used to find relevant documents, and aim to make it more
specific and context-aware. \n\n Do not include any other text than the rewritten
query, especially any preamble or postamble and only add expected output format
if its relevant to the rewritten query. \n\n Focus on the key words of the intended
task and to retrieve the most relevant information. \n\n There will be some
extra context provided that might need to be removed such as expected_output
formats structured_outputs and other instructions."}, {"role": "user", "content":
"The original query is: What is Brandon''s favorite color?\n\nThis is the expected
criteria for your final answer: Brandon''s favorite color.\nyou MUST return
the actual complete content as the final answer, not a summary.."}], "tools":
null, "callbacks": null, "available_functions": null}}, {"event_id": "0fcc1faf-8534-48e9-9823-bfe04645a79b",
"timestamp": "2025-09-24T05:24:13.694713+00:00", "type": "llm_call_completed",
"event_data": {"timestamp": "2025-09-24T05:24:13.694669+00:00", "type": "llm_call_completed",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_id": null, "task_name": null, "agent_id": null, "agent_role": null, "from_task":
null, "from_agent": null, "messages": [{"role": "system", "content": "Your goal
is to rewrite the user query so that it is optimized for retrieval from a vector
database. Consider how the query will be used to find relevant documents, and
aim to make it more specific and context-aware. \n\n Do not include any other
text than the rewritten query, especially any preamble or postamble and only
add expected output format if its relevant to the rewritten query. \n\n Focus
on the key words of the intended task and to retrieve the most relevant information.
\n\n There will be some extra context provided that might need to be removed
such as expected_output formats structured_outputs and other instructions."},
{"role": "user", "content": "The original query is: What is Brandon''s favorite
color?\n\nThis is the expected criteria for your final answer: Brandon''s favorite
color.\nyou MUST return the actual complete content as the final answer, not
a summary.."}], "response": "Brandon favorite color", "call_type": "<LLMCallType.LLM_CALL:
''llm_call''>", "model": "gpt-4o-mini"}}, {"event_id": "b82cf317-57e0-448f-a028-e74ed3a4cdb6",
"timestamp": "2025-09-24T05:24:13.825341+00:00", "type": "agent_execution_started",
"event_data": {"agent_role": "Information Agent", "agent_goal": "Provide information
based on knowledge sources", "agent_backstory": "You have access to specific
knowledge sources."}}, {"event_id": "820353d4-e621-463e-a512-45ebe3cbcd99",
"timestamp": "2025-09-24T05:24:13.825393+00:00", "type": "llm_call_started",
"event_data": {"timestamp": "2025-09-24T05:24:13.825378+00:00", "type": "llm_call_started",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_id": "a89d3b30-df0d-4107-a477-ef54077c6833", "task_name": "What is Brandon''s
favorite color?", "agent_id": "36311e2d-ffd3-4d3b-a212-f12d63c1cb06", "agent_role":
"Information Agent", "from_task": null, "from_agent": null, "model": "gpt-4o-mini",
"messages": [{"role": "system", "content": "You are Information Agent. You have
access to specific knowledge sources.\nYour personal goal is: Provide information
based on knowledge sources\nTo give my best complete final answer to the task
respond using the exact following format:\n\nThought: I now can give a great
answer\nFinal Answer: Your final answer must be the great and the most complete
as possible, it must be outcome described.\n\nI MUST use these formats, my job
depends on it!"}, {"role": "user", "content": "\nCurrent Task: What is Brandon''s
favorite color?\n\nThis is the expected criteria for your final answer: Brandon''s
favorite color.\nyou MUST return the actual complete content as the final answer,
not a summary.Additional Information: Brandon''s favorite color is red and he
likes Mexican food.\n\nBegin! This is VERY important to you, use the tools available
and give your best Final Answer, your job depends on it!\n\nThought:"}], "tools":
null, "callbacks": ["<crewai.utilities.token_counter_callback.TokenCalcHandler
object at 0x13b1efbc0>"], "available_functions": null}}, {"event_id": "0c94bb30-872b-40e2-bea1-8898056c6989",
"timestamp": "2025-09-24T05:24:13.826292+00:00", "type": "llm_call_completed",
"event_data": {"timestamp": "2025-09-24T05:24:13.826275+00:00", "type": "llm_call_completed",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_id": "a89d3b30-df0d-4107-a477-ef54077c6833", "task_name": "What is Brandon''s
favorite color?", "agent_id": "36311e2d-ffd3-4d3b-a212-f12d63c1cb06", "agent_role":
"Information Agent", "from_task": null, "from_agent": null, "messages": [{"role":
"system", "content": "You are Information Agent. You have access to specific
knowledge sources.\nYour personal goal is: Provide information based on knowledge
sources\nTo give my best complete final answer to the task respond using the
exact following format:\n\nThought: I now can give a great answer\nFinal Answer:
Your final answer must be the great and the most complete as possible, it must
be outcome described.\n\nI MUST use these formats, my job depends on it!"},
{"role": "user", "content": "\nCurrent Task: What is Brandon''s favorite color?\n\nThis
is the expected criteria for your final answer: Brandon''s favorite color.\nyou
MUST return the actual complete content as the final answer, not a summary.Additional
Information: Brandon''s favorite color is red and he likes Mexican food.\n\nBegin!
This is VERY important to you, use the tools available and give your best Final
Answer, your job depends on it!\n\nThought:"}], "response": "I now can give
a great answer \nFinal Answer: Brandon''s favorite color is red.", "call_type":
"<LLMCallType.LLM_CALL: ''llm_call''>", "model": "gpt-4o-mini"}}, {"event_id":
"e8a00053-f0ef-4712-9ab8-1f17554390c5", "timestamp": "2025-09-24T05:24:13.826380+00:00",
"type": "agent_execution_completed", "event_data": {"agent_role": "Information
Agent", "agent_goal": "Provide information based on knowledge sources", "agent_backstory":
"You have access to specific knowledge sources."}}, {"event_id": "e8a26836-8bcb-4020-ae54-ef8fad2b5eaf",
"timestamp": "2025-09-24T05:24:13.826421+00:00", "type": "task_completed", "event_data":
{"task_description": "What is Brandon''s favorite color?", "task_name": "What
is Brandon''s favorite color?", "task_id": "a89d3b30-df0d-4107-a477-ef54077c6833",
"output_raw": "Brandon''s favorite color is red.", "output_format": "OutputFormat.RAW",
"agent_role": "Information Agent"}}, {"event_id": "6947f01a-4023-4f2a-a72d-6f058ea76498",
"timestamp": "2025-09-24T05:24:13.827029+00:00", "type": "crew_kickoff_completed",
"event_data": {"timestamp": "2025-09-24T05:24:13.827017+00:00", "type": "crew_kickoff_completed",
"source_fingerprint": null, "source_type": null, "fingerprint_metadata": null,
"task_id": null, "task_name": null, "agent_id": null, "agent_role": null, "crew_name":
"crew", "crew": null, "output": {"description": "What is Brandon''s favorite
color?", "name": "What is Brandon''s favorite color?", "expected_output": "Brandon''s
favorite color.", "summary": "What is Brandon''s favorite color?...", "raw":
"Brandon''s favorite color is red.", "pydantic": null, "json_dict": null, "agent":
"Information Agent", "output_format": "raw"}, "total_tokens": 380}}], "batch_metadata":
{"events_count": 10, "batch_sequence": 1, "is_final_batch": false}}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '9020'
Content-Type:
- application/json
User-Agent:
- CrewAI-CLI/0.193.2
X-Crewai-Organization-Id:
- d3a3d10c-35db-423f-a7a4-c026030ba64d
X-Crewai-Version:
- 0.193.2
method: POST
uri: http://localhost:3000/crewai_plus/api/v1/tracing/batches/54a8adea-c972-420f-a708-1a544eff9635/events
response:
body:
string: '{"events_created":10,"trace_batch_id":"61db142f-783b-4fd1-9aa3-6a3a004dcd01"}'
headers:
Content-Length:
- '77'
cache-control:
- max-age=0, private, must-revalidate
content-security-policy:
- 'default-src ''self'' *.crewai.com crewai.com; script-src ''self'' ''unsafe-inline''
*.crewai.com crewai.com https://cdn.jsdelivr.net/npm/apexcharts https://www.gstatic.com
https://run.pstmn.io https://share.descript.com/; style-src ''self'' ''unsafe-inline''
*.crewai.com crewai.com https://cdn.jsdelivr.net/npm/apexcharts; img-src ''self''
data: *.crewai.com crewai.com https://zeus.tools.crewai.com https://dashboard.tools.crewai.com
https://cdn.jsdelivr.net; font-src ''self'' data: *.crewai.com crewai.com;
connect-src ''self'' *.crewai.com crewai.com https://zeus.tools.crewai.com
https://connect.useparagon.com/ https://zeus.useparagon.com/* https://*.useparagon.com/*
https://run.pstmn.io https://connect.tools.crewai.com/ ws://localhost:3036
wss://localhost:3036; frame-src ''self'' *.crewai.com crewai.com https://connect.useparagon.com/
https://zeus.tools.crewai.com https://zeus.useparagon.com/* https://connect.tools.crewai.com/
https://www.youtube.com https://share.descript.com'
content-type:
- application/json; charset=utf-8
etag:
- W/"a52ad8652657c7785d695eec97440bdf"
permissions-policy:
- camera=(), microphone=(self), geolocation=()
referrer-policy:
- strict-origin-when-cross-origin
server-timing:
- cache_read.active_support;dur=0.05, sql.active_record;dur=33.94, cache_generate.active_support;dur=2.76,
cache_write.active_support;dur=0.14, cache_read_multi.active_support;dur=0.08,
start_processing.action_controller;dur=0.00, instantiation.active_record;dur=0.25,
start_transaction.active_record;dur=0.00, transaction.active_record;dur=44.09,
process_action.action_controller;dur=322.17
vary:
- Accept
x-content-type-options:
- nosniff
x-frame-options:
- SAMEORIGIN
x-permitted-cross-domain-policies:
- none
x-request-id:
- d977667c-2447-4373-aca9-6af8c50cc7e8
x-runtime:
- '0.378785'
x-xss-protection:
- 1; mode=block
status:
code: 200
message: OK
- request:
body: '{"status": "completed", "duration_ms": 1355, "final_event_count": 10}'
headers:
Accept:
- '*/*'
Accept-Encoding:
- gzip, deflate
Connection:
- keep-alive
Content-Length:
- '69'
Content-Type:
- application/json
User-Agent:
- CrewAI-CLI/0.193.2
X-Crewai-Organization-Id:
- d3a3d10c-35db-423f-a7a4-c026030ba64d
X-Crewai-Version:
- 0.193.2
method: PATCH
uri: http://localhost:3000/crewai_plus/api/v1/tracing/batches/54a8adea-c972-420f-a708-1a544eff9635/finalize
response:
body:
string: '{"id":"61db142f-783b-4fd1-9aa3-6a3a004dcd01","trace_id":"54a8adea-c972-420f-a708-1a544eff9635","execution_type":"crew","crew_name":"crew","flow_name":null,"status":"completed","duration_ms":1355,"crewai_version":"0.193.2","privacy_level":"standard","total_events":10,"execution_context":{"crew_name":"crew","flow_name":null,"privacy_level":"standard","crewai_version":"0.193.2","crew_fingerprint":null},"created_at":"2025-09-24T05:24:13.678Z","updated_at":"2025-09-24T05:24:14.660Z"}'
headers:
Content-Length:
- '483'
cache-control:
- max-age=0, private, must-revalidate
content-security-policy:
- 'default-src ''self'' *.crewai.com crewai.com; script-src ''self'' ''unsafe-inline''
*.crewai.com crewai.com https://cdn.jsdelivr.net/npm/apexcharts https://www.gstatic.com
https://run.pstmn.io https://share.descript.com/; style-src ''self'' ''unsafe-inline''
*.crewai.com crewai.com https://cdn.jsdelivr.net/npm/apexcharts; img-src ''self''
data: *.crewai.com crewai.com https://zeus.tools.crewai.com https://dashboard.tools.crewai.com
https://cdn.jsdelivr.net; font-src ''self'' data: *.crewai.com crewai.com;
connect-src ''self'' *.crewai.com crewai.com https://zeus.tools.crewai.com
https://connect.useparagon.com/ https://zeus.useparagon.com/* https://*.useparagon.com/*
https://run.pstmn.io https://connect.tools.crewai.com/ ws://localhost:3036
wss://localhost:3036; frame-src ''self'' *.crewai.com crewai.com https://connect.useparagon.com/
https://zeus.tools.crewai.com https://zeus.useparagon.com/* https://connect.tools.crewai.com/
https://www.youtube.com https://share.descript.com'
content-type:
- application/json; charset=utf-8
etag:
- W/"38e0f70fac59670de2df6d90478b7e43"
permissions-policy:
- camera=(), microphone=(self), geolocation=()
referrer-policy:
- strict-origin-when-cross-origin
server-timing:
- cache_read.active_support;dur=0.04, cache_fetch_hit.active_support;dur=0.00,
cache_read_multi.active_support;dur=0.05, start_processing.action_controller;dur=0.00,
sql.active_record;dur=14.79, instantiation.active_record;dur=0.59, unpermitted_parameters.action_controller;dur=0.02,
start_transaction.active_record;dur=0.00, transaction.active_record;dur=4.39,
process_action.action_controller;dur=430.19
vary:
- Accept
x-content-type-options:
- nosniff
x-frame-options:
- SAMEORIGIN
x-permitted-cross-domain-policies:
- none
x-request-id:
- 8faa01f5-3c5f-47c0-8aef-e0807a0e0dcf
x-runtime:
- '0.445912'
x-xss-protection:
- 1; mode=block
status:
code: 200
message: OK
version: 1