Files
crewAI/tests/llm_test.py
Lorenze Jay 00c2f5043e WIP crew events emitter (#2048)
* WIP crew events emitter

* Refactor event handling and introduce new event types

- Migrate from global `emit` function to `event_bus.emit`
- Add new event types for task failures, tool usage, and agent execution
- Update event listeners and event bus to support more granular event tracking
- Remove deprecated event emission methods
- Improve event type consistency and add more detailed event information

* Add event emission for agent execution lifecycle

- Emit AgentExecutionStarted and AgentExecutionError events
- Update CrewAgentExecutor to use event_bus for tracking agent execution
- Refactor error handling to include event emission
- Minor code formatting improvements in task.py and crew_agent_executor.py
- Fix a typo in test file

* Refactor event system and add third-party event listeners

- Move event_bus import to correct module paths
- Introduce BaseEventListener abstract base class
- Add AgentOpsListener for third-party event tracking
- Update event listener initialization and setup
- Clean up event-related imports and exports

* Enhance event system type safety and error handling

- Improve type annotations for event bus and event types
- Add null checks for agent and task in event emissions
- Update import paths for base tool and base agent
- Refactor event listener type hints
- Remove unnecessary print statements
- Update test configurations to match new event handling

* Refactor event classes to improve type safety and naming consistency

- Rename event classes to have explicit 'Event' suffix (e.g., TaskStartedEvent)
- Update import statements and references across multiple files
- Remove deprecated events.py module
- Enhance event type hints and configurations
- Clean up unnecessary event-related code

* Add default model for CrewEvaluator and fix event import order

- Set default model to "gpt-4o-mini" in CrewEvaluator when no model is specified
- Reorder event-related imports in task.py to follow standard import conventions
- Update event bus initialization method return type hint
- Export event_bus in events/__init__.py

* Fix tool usage and event import handling

- Update tool usage to use `.get()` method when checking tool name
- Remove unnecessary `__all__` export list in events/__init__.py

* Refactor Flow and Agent event handling to use event_bus

- Remove `event_emitter` from Flow class and replace with `event_bus.emit()`
- Update Flow and Agent tests to use event_bus event listeners
- Remove redundant event emissions in Flow methods
- Add debug print statements in Flow execution
- Simplify event tracking in test cases

* Enhance event handling for Crew, Task, and Event classes

- Add crew name to failed event types (CrewKickoffFailedEvent, CrewTrainFailedEvent, CrewTestFailedEvent)
- Update Task events to remove redundant task and context attributes
- Refactor EventListener to use Logger for consistent event logging
- Add new event types for Crew train and test events
- Improve event bus event tracking in test cases

* Remove telemetry and tracing dependencies from Task and Flow classes

- Remove telemetry-related imports and private attributes from Task class
- Remove `_telemetry` attribute from Flow class
- Update event handling to emit events without direct telemetry tracking
- Simplify task and flow execution by removing explicit telemetry spans
- Move telemetry-related event handling to EventListener

* Clean up unused imports and event-related code

- Remove unused imports from various event and flow-related files
- Reorder event imports to follow standard conventions
- Remove unnecessary event type references
- Simplify import statements in event and flow modules

* Update crew test to validate verbose output and kickoff_for_each method

- Enhance test_crew_verbose_output to check specific listener log messages
- Modify test_kickoff_for_each_invalid_input to use Pydantic validation error
- Improve test coverage for crew logging and input validation

* Update crew test verbose output with improved emoji icons

- Replace task and agent completion icons from 👍 to 
- Enhance readability of test output logging
- Maintain consistent test coverage for crew verbose output

* Add MethodExecutionFailedEvent to handle flow method execution failures

- Introduce new MethodExecutionFailedEvent in flow_events module
- Update Flow class to catch and emit method execution failures
- Add event listener for method execution failure events
- Update event-related imports to include new event type
- Enhance test coverage for method execution failure handling

* Propagate method execution failures in Flow class

- Modify Flow class to re-raise exceptions after emitting MethodExecutionFailedEvent
- Reorder MethodExecutionFailedEvent import to maintain consistent import style

* Enable test coverage for Flow method execution failure event

- Uncomment pytest.raises() in test_events to verify exception handling
- Ensure test validates MethodExecutionFailedEvent emission during flow kickoff

* Add event handling for tool usage events

- Introduce event listeners for ToolUsageFinishedEvent and ToolUsageErrorEvent
- Log tool usage events with descriptive emoji icons ( and )
- Update event_listener to track and log tool usage lifecycle

* Reorder and clean up event imports in event_listener

- Reorganize imports for tool usage events and other event types
- Maintain consistent import ordering and remove unused imports
- Ensure clean and organized import structure in event_listener module

* moving to dedicated eventlistener

* dont forget crew level

* Refactor AgentOps event listener for crew-level tracking

- Modify AgentOpsListener to handle crew-level events
- Initialize and end AgentOps session at crew kickoff and completion
- Create agents for each crew member during session initialization
- Improve session management and event recording
- Clean up and simplify event handling logic

* Update test_events to validate tool usage error event handling

- Modify test to assert single error event with correct attributes
- Use pytest.raises() to verify error event generation
- Simplify error event validation in test case

* Improve AgentOps listener type hints and formatting

- Add string type hints for AgentOps classes to resolve potential import issues
- Clean up unnecessary whitespace and improve code indentation
- Simplify initialization and event handling logic

* Update test_events to validate multiple tool usage events

- Modify test to assert 75 events instead of a single error event
- Remove pytest.raises() check, allowing crew kickoff to complete
- Adjust event validation to support broader event tracking

* Rename event_bus to crewai_event_bus for improved clarity and specificity

- Replace all references to `event_bus` with `crewai_event_bus`
- Update import statements across multiple files
- Remove the old `event_bus.py` file
- Maintain existing event handling functionality

* Enhance EventListener with singleton pattern and color configuration

- Implement singleton pattern for EventListener to ensure single instance
- Add default color configuration using EMITTER_COLOR from constants
- Modify log method calls to use default color and remove redundant color parameters
- Improve initialization logic to prevent multiple initializations

* Add FlowPlotEvent and update event bus to support flow plotting

- Introduce FlowPlotEvent to track flow plotting events
- Replace Telemetry method with event bus emission in Flow.plot()
- Update event bus to support new FlowPlotEvent type
- Add test case to validate flow plotting event emission

* Remove RunType enum and clean up crew events module

- Delete unused RunType enum from crew_events.py
- Simplify crew_events.py by removing unnecessary enum definition
- Improve code clarity by removing unneeded imports

* Enhance event handling for tool usage and agent execution

- Add new events for tool usage: ToolSelectionErrorEvent, ToolValidateInputErrorEvent
- Improve error tracking and event emission in ToolUsage and LLM classes
- Update AgentExecutionStartedEvent to use task_prompt instead of inputs
- Add comprehensive test coverage for new event types and error scenarios

* Refactor event system and improve crew testing

- Extract base CrewEvent class to a new base_events.py module
- Update event imports across multiple event-related files
- Modify CrewTestStartedEvent to use eval_llm instead of openai_model_name
- Add LLM creation validation in crew testing method
- Improve type handling and event consistency

* Refactor task events to use base CrewEvent

- Move CrewEvent import from crew_events to base_events
- Remove unnecessary blank lines in task_events.py
- Simplify event class structure for task-related events

* Update AgentExecutionStartedEvent to use task_prompt

- Modify test_events.py to use task_prompt instead of inputs
- Simplify event input validation in test case
- Align with recent event system refactoring

* Improve type hinting for TaskCompletedEvent handler

- Add explicit type annotation for TaskCompletedEvent in event_listener.py
- Enhance type safety for event handling in EventListener

* Improve test_validate_tool_input_invalid_input with mock objects

- Add explicit mock objects for agent and action in test case
- Ensure proper string values for mock agent and action attributes
- Simplify test setup for ToolUsage validation method

* Remove ToolUsageStartedEvent emission in tool usage process

- Remove unnecessary event emission for tool usage start
- Simplify tool usage event handling
- Eliminate redundant event data preparation step

* refactor: clean up and organize imports in llm and flow modules

* test: Improve flow persistence test cases and logging
2025-02-19 13:52:47 -08:00

428 lines
14 KiB
Python

import os
from time import sleep
from unittest.mock import MagicMock, patch
import pytest
from pydantic import BaseModel
from crewai.agents.agent_builder.utilities.base_token_process import TokenProcess
from crewai.llm import LLM
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.events.tool_usage_events import ToolExecutionErrorEvent
from crewai.utilities.token_counter_callback import TokenCalcHandler
# TODO: This test fails without print statement, which makes me think that something is happening asynchronously that we need to eventually fix and dive deeper into at a later date
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_callback_replacement():
llm1 = LLM(model="gpt-4o-mini")
llm2 = LLM(model="gpt-4o-mini")
calc_handler_1 = TokenCalcHandler(token_cost_process=TokenProcess())
calc_handler_2 = TokenCalcHandler(token_cost_process=TokenProcess())
result1 = llm1.call(
messages=[{"role": "user", "content": "Hello, world!"}],
callbacks=[calc_handler_1],
)
print("result1:", result1)
usage_metrics_1 = calc_handler_1.token_cost_process.get_summary()
print("usage_metrics_1:", usage_metrics_1)
result2 = llm2.call(
messages=[{"role": "user", "content": "Hello, world from another agent!"}],
callbacks=[calc_handler_2],
)
sleep(5)
print("result2:", result2)
usage_metrics_2 = calc_handler_2.token_cost_process.get_summary()
print("usage_metrics_2:", usage_metrics_2)
# The first handler should not have been updated
assert usage_metrics_1.successful_requests == 1
assert usage_metrics_2.successful_requests == 1
assert usage_metrics_1 == calc_handler_1.token_cost_process.get_summary()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_with_string_input():
llm = LLM(model="gpt-4o-mini")
# Test the call method with a string input
result = llm.call("Return the name of a random city in the world.")
assert isinstance(result, str)
assert len(result.strip()) > 0 # Ensure the response is not empty
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_with_string_input_and_callbacks():
llm = LLM(model="gpt-4o-mini")
calc_handler = TokenCalcHandler(token_cost_process=TokenProcess())
# Test the call method with a string input and callbacks
result = llm.call(
"Tell me a joke.",
callbacks=[calc_handler],
)
usage_metrics = calc_handler.token_cost_process.get_summary()
assert isinstance(result, str)
assert len(result.strip()) > 0
assert usage_metrics.successful_requests == 1
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_with_message_list():
llm = LLM(model="gpt-4o-mini")
messages = [{"role": "user", "content": "What is the capital of France?"}]
# Test the call method with a list of messages
result = llm.call(messages)
assert isinstance(result, str)
assert "Paris" in result
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_with_tool_and_string_input():
llm = LLM(model="gpt-4o-mini")
def get_current_year() -> str:
"""Returns the current year as a string."""
from datetime import datetime
return str(datetime.now().year)
# Create tool schema
tool_schema = {
"type": "function",
"function": {
"name": "get_current_year",
"description": "Returns the current year as a string.",
"parameters": {
"type": "object",
"properties": {},
"required": [],
},
},
}
# Available functions mapping
available_functions = {"get_current_year": get_current_year}
# Test the call method with a string input and tool
result = llm.call(
"What is the current year?",
tools=[tool_schema],
available_functions=available_functions,
)
assert isinstance(result, str)
assert result == get_current_year()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_call_with_tool_and_message_list():
llm = LLM(model="gpt-4o-mini")
def square_number(number: int) -> int:
"""Returns the square of a number."""
return number * number
# Create tool schema
tool_schema = {
"type": "function",
"function": {
"name": "square_number",
"description": "Returns the square of a number.",
"parameters": {
"type": "object",
"properties": {
"number": {"type": "integer", "description": "The number to square"}
},
"required": ["number"],
},
},
}
# Available functions mapping
available_functions = {"square_number": square_number}
messages = [{"role": "user", "content": "What is the square of 5?"}]
# Test the call method with messages and tool
result = llm.call(
messages,
tools=[tool_schema],
available_functions=available_functions,
)
assert isinstance(result, int)
assert result == 25
@pytest.mark.vcr(filter_headers=["authorization"])
def test_llm_passes_additional_params():
llm = LLM(
model="gpt-4o-mini",
vertex_credentials="test_credentials",
vertex_project="test_project",
)
messages = [{"role": "user", "content": "Hello, world!"}]
with patch("litellm.completion") as mocked_completion:
# Create mocks for response structure
mock_message = MagicMock()
mock_message.content = "Test response"
mock_choice = MagicMock()
mock_choice.message = mock_message
mock_response = MagicMock()
mock_response.choices = [mock_choice]
mock_response.usage = {
"prompt_tokens": 5,
"completion_tokens": 5,
"total_tokens": 10,
}
# Set up the mocked completion to return the mock response
mocked_completion.return_value = mock_response
result = llm.call(messages)
# Assert that litellm.completion was called once
mocked_completion.assert_called_once()
# Retrieve the actual arguments with which litellm.completion was called
_, kwargs = mocked_completion.call_args
# Check that the additional_params were passed to litellm.completion
assert kwargs["vertex_credentials"] == "test_credentials"
assert kwargs["vertex_project"] == "test_project"
# Also verify that other expected parameters are present
assert kwargs["model"] == "gpt-4o-mini"
assert kwargs["messages"] == messages
# Check the result from llm.call
assert result == "Test response"
def test_get_custom_llm_provider_openrouter():
llm = LLM(model="openrouter/deepseek/deepseek-chat")
assert llm._get_custom_llm_provider() == "openrouter"
def test_get_custom_llm_provider_gemini():
llm = LLM(model="gemini/gemini-1.5-pro")
assert llm._get_custom_llm_provider() == "gemini"
def test_get_custom_llm_provider_openai():
llm = LLM(model="gpt-4")
assert llm._get_custom_llm_provider() == "openai"
def test_validate_call_params_supported():
class DummyResponse(BaseModel):
a: int
# Patch supports_response_schema to simulate a supported model.
with patch("crewai.llm.supports_response_schema", return_value=True):
llm = LLM(
model="openrouter/deepseek/deepseek-chat", response_format=DummyResponse
)
# Should not raise any error.
llm._validate_call_params()
def test_validate_call_params_not_supported():
class DummyResponse(BaseModel):
a: int
# Patch supports_response_schema to simulate an unsupported model.
with patch("crewai.llm.supports_response_schema", return_value=False):
llm = LLM(model="gemini/gemini-1.5-pro", response_format=DummyResponse)
with pytest.raises(ValueError) as excinfo:
llm._validate_call_params()
assert "does not support response_format" in str(excinfo.value)
def test_validate_call_params_no_response_format():
# When no response_format is provided, no validation error should occur.
llm = LLM(model="gemini/gemini-1.5-pro", response_format=None)
llm._validate_call_params()
@pytest.mark.vcr(filter_headers=["authorization"])
def test_o3_mini_reasoning_effort_high():
llm = LLM(
model="o3-mini",
reasoning_effort="high",
)
result = llm.call("What is the capital of France?")
assert isinstance(result, str)
assert "Paris" in result
@pytest.mark.vcr(filter_headers=["authorization"])
def test_o3_mini_reasoning_effort_low():
llm = LLM(
model="o3-mini",
reasoning_effort="low",
)
result = llm.call("What is the capital of France?")
assert isinstance(result, str)
assert "Paris" in result
@pytest.mark.vcr(filter_headers=["authorization"])
def test_o3_mini_reasoning_effort_medium():
llm = LLM(
model="o3-mini",
reasoning_effort="medium",
)
result = llm.call("What is the capital of France?")
assert isinstance(result, str)
assert "Paris" in result
@pytest.mark.vcr(filter_headers=["authorization"])
@pytest.fixture
def anthropic_llm():
"""Fixture providing an Anthropic LLM instance."""
return LLM(model="anthropic/claude-3-sonnet")
@pytest.fixture
def system_message():
"""Fixture providing a system message."""
return {"role": "system", "content": "test"}
@pytest.fixture
def user_message():
"""Fixture providing a user message."""
return {"role": "user", "content": "test"}
def test_anthropic_message_formatting_edge_cases(anthropic_llm):
"""Test edge cases for Anthropic message formatting."""
# Test None messages
with pytest.raises(TypeError, match="Messages cannot be None"):
anthropic_llm._format_messages_for_provider(None)
# Test empty message list
formatted = anthropic_llm._format_messages_for_provider([])
assert len(formatted) == 1
assert formatted[0]["role"] == "user"
assert formatted[0]["content"] == "."
# Test invalid message format
with pytest.raises(TypeError, match="Invalid message format"):
anthropic_llm._format_messages_for_provider([{"invalid": "message"}])
def test_anthropic_model_detection():
"""Test Anthropic model detection with various formats."""
models = [
("anthropic/claude-3", True),
("claude-instant", True),
("claude/v1", True),
("gpt-4", False),
("", False),
("anthropomorphic", False), # Should not match partial words
]
for model, expected in models:
llm = LLM(model=model)
assert llm.is_anthropic == expected, f"Failed for model: {model}"
def test_anthropic_message_formatting(anthropic_llm, system_message, user_message):
"""Test Anthropic message formatting with fixtures."""
# Test when first message is system
formatted = anthropic_llm._format_messages_for_provider([system_message])
assert len(formatted) == 2
assert formatted[0]["role"] == "user"
assert formatted[0]["content"] == "."
assert formatted[1] == system_message
# Test when first message is already user
formatted = anthropic_llm._format_messages_for_provider([user_message])
assert len(formatted) == 1
assert formatted[0] == user_message
# Test with empty message list
formatted = anthropic_llm._format_messages_for_provider([])
assert len(formatted) == 1
assert formatted[0]["role"] == "user"
assert formatted[0]["content"] == "."
# Test with non-Anthropic model (should not modify messages)
non_anthropic_llm = LLM(model="gpt-4")
formatted = non_anthropic_llm._format_messages_for_provider([system_message])
assert len(formatted) == 1
assert formatted[0] == system_message
def test_deepseek_r1_with_open_router():
if not os.getenv("OPEN_ROUTER_API_KEY"):
pytest.skip("OPEN_ROUTER_API_KEY not set; skipping test.")
llm = LLM(
model="openrouter/deepseek/deepseek-r1",
base_url="https://openrouter.ai/api/v1",
api_key=os.getenv("OPEN_ROUTER_API_KEY"),
)
result = llm.call("What is the capital of France?")
assert isinstance(result, str)
assert "Paris" in result
@pytest.mark.vcr(filter_headers=["authorization"])
def test_tool_execution_error_event():
llm = LLM(model="gpt-4o-mini")
def failing_tool(param: str) -> str:
"""This tool always fails."""
raise Exception("Tool execution failed!")
tool_schema = {
"type": "function",
"function": {
"name": "failing_tool",
"description": "This tool always fails.",
"parameters": {
"type": "object",
"properties": {
"param": {"type": "string", "description": "A test parameter"}
},
"required": ["param"],
},
},
}
received_events = []
@crewai_event_bus.on(ToolExecutionErrorEvent)
def event_handler(source, event):
received_events.append(event)
available_functions = {"failing_tool": failing_tool}
messages = [{"role": "user", "content": "Use the failing tool"}]
llm.call(
messages,
tools=[tool_schema],
available_functions=available_functions,
)
assert len(received_events) == 1
event = received_events[0]
assert isinstance(event, ToolExecutionErrorEvent)
assert event.tool_name == "failing_tool"
assert event.tool_args == {"param": "test"}
assert event.tool_class == failing_tool
assert "Tool execution failed!" in event.error