Files
crewAI/src/crewai/rag/embeddings/providers/voyageai/embedding_callable.py
Greyson LaLonde 2485ed93d6 feat: upgrade chromadb to v1.1.0, improve types
- update imports and include handling for chromadb v1.1.0  
- fix mypy and typing_compat issues (required, typeddict, voyageai)  
- refine embedderconfig typing and allow base provider instances  
- handle mem0 as special case for external memory storage  
- bump tools and clean up redundant deps
2025-09-25 20:48:37 -04:00

59 lines
1.8 KiB
Python

"""VoyageAI embedding function implementation."""
from typing import cast
from typing_extensions import Unpack
from crewai.rag.core.base_embeddings_callable import EmbeddingFunction
from crewai.rag.core.types import Documents, Embeddings
from crewai.rag.embeddings.providers.voyageai.types import VoyageAIProviderConfig
class VoyageAIEmbeddingFunction(EmbeddingFunction[Documents]):
"""Embedding function for VoyageAI models."""
def __init__(self, **kwargs: Unpack[VoyageAIProviderConfig]) -> None:
"""Initialize VoyageAI embedding function.
Args:
**kwargs: Configuration parameters for VoyageAI.
"""
try:
import voyageai # type: ignore[import-not-found]
except ImportError as e:
raise ImportError(
"voyageai is required for voyageai embeddings. "
"Install it with: uv add voyageai"
) from e
self._config = kwargs
self._client = voyageai.Client(
api_key=kwargs["api_key"],
max_retries=kwargs.get("max_retries", 0),
timeout=kwargs.get("timeout"),
)
def __call__(self, input: Documents) -> Embeddings:
"""Generate embeddings for input documents.
Args:
input: List of documents to embed.
Returns:
List of embedding vectors.
"""
if isinstance(input, str):
input = [input]
result = self._client.embed(
texts=input,
model=self._config.get("model", "voyage-2"),
input_type=self._config.get("input_type"),
truncation=self._config.get("truncation", True),
output_dtype=self._config.get("output_dtype"),
output_dimension=self._config.get("output_dimension"),
)
return cast(Embeddings, result.embeddings)