mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-11 00:58:30 +00:00
40 lines
1.4 KiB
Python
40 lines
1.4 KiB
Python
from crewai.knowledge.embedder.base_embedder import BaseEmbedder
|
|
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
|
|
|
|
|
|
class TextFileKnowledgeSource(BaseKnowledgeSource):
|
|
"""A knowledge base that stores and queries plain text content using embeddings"""
|
|
|
|
def __init__(
|
|
self,
|
|
file_path: str,
|
|
chunk_size: int = 1000,
|
|
chunk_overlap: int = 200,
|
|
):
|
|
super().__init__(
|
|
chunk_size,
|
|
chunk_overlap,
|
|
)
|
|
|
|
def add(self, embedder: BaseEmbedder) -> None:
|
|
"""Add text content to the knowledge base, chunk it, and compute embeddings"""
|
|
if not isinstance(self.content, str):
|
|
raise ValueError("StringKnowledgeBase only accepts string content")
|
|
|
|
# Create chunks from the text
|
|
new_chunks = self._chunk_text(content)
|
|
|
|
# Add chunks to the knowledge base
|
|
self.chunks.extend(new_chunks)
|
|
|
|
# Compute and store embeddings for the new chunks
|
|
embedder.embed_chunks(new_chunks)
|
|
|
|
def query(self, embedder: BaseEmbedder, query: str, top_k: int = 3) -> str:
|
|
"""
|
|
Query the knowledge base using semantic search
|
|
Returns the most relevant chunk based on embedding similarity
|
|
"""
|
|
similar_chunks = self._find_similar_chunks(embedder, query, top_k=top_k)
|
|
return similar_chunks[0] if similar_chunks else ""
|