mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 15:48:29 +00:00
* iwp * add in api_base --------- Co-authored-by: Lorenze Jay <63378463+lorenzejay@users.noreply.github.com>
195 lines
6.7 KiB
Python
195 lines
6.7 KiB
Python
import os
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
from crewai.cli.constants import DEFAULT_LLM_MODEL, ENV_VARS, LITELLM_PARAMS
|
|
from crewai.llm import LLM
|
|
|
|
|
|
def create_llm(
|
|
llm_value: Union[str, LLM, Any, None] = None,
|
|
) -> Optional[LLM]:
|
|
"""
|
|
Creates or returns an LLM instance based on the given llm_value.
|
|
|
|
Args:
|
|
llm_value (str | LLM | Any | None):
|
|
- str: The model name (e.g., "gpt-4").
|
|
- LLM: Already instantiated LLM, returned as-is.
|
|
- Any: Attempt to extract known attributes like model_name, temperature, etc.
|
|
- None: Use environment-based or fallback default model.
|
|
|
|
Returns:
|
|
An LLM instance if successful, or None if something fails.
|
|
"""
|
|
|
|
# 1) If llm_value is already an LLM object, return it directly
|
|
if isinstance(llm_value, LLM):
|
|
return llm_value
|
|
|
|
# 2) If llm_value is a string (model name)
|
|
if isinstance(llm_value, str):
|
|
try:
|
|
created_llm = LLM(model=llm_value)
|
|
return created_llm
|
|
except Exception as e:
|
|
print(f"Failed to instantiate LLM with model='{llm_value}': {e}")
|
|
return None
|
|
|
|
# 3) If llm_value is None, parse environment variables or use default
|
|
if llm_value is None:
|
|
return _llm_via_environment_or_fallback()
|
|
|
|
# 4) Otherwise, attempt to extract relevant attributes from an unknown object
|
|
try:
|
|
# Extract attributes with explicit types
|
|
model = (
|
|
getattr(llm_value, "model_name", None)
|
|
or getattr(llm_value, "deployment_name", None)
|
|
or str(llm_value)
|
|
)
|
|
temperature: Optional[float] = getattr(llm_value, "temperature", None)
|
|
max_tokens: Optional[int] = getattr(llm_value, "max_tokens", None)
|
|
logprobs: Optional[int] = getattr(llm_value, "logprobs", None)
|
|
timeout: Optional[float] = getattr(llm_value, "timeout", None)
|
|
api_key: Optional[str] = getattr(llm_value, "api_key", None)
|
|
base_url: Optional[str] = getattr(llm_value, "base_url", None)
|
|
api_base: Optional[str] = getattr(llm_value, "api_base", None)
|
|
|
|
created_llm = LLM(
|
|
model=model,
|
|
temperature=temperature,
|
|
max_tokens=max_tokens,
|
|
logprobs=logprobs,
|
|
timeout=timeout,
|
|
api_key=api_key,
|
|
base_url=base_url,
|
|
api_base=api_base,
|
|
)
|
|
return created_llm
|
|
except Exception as e:
|
|
print(f"Error instantiating LLM from unknown object type: {e}")
|
|
return None
|
|
|
|
|
|
def _llm_via_environment_or_fallback() -> Optional[LLM]:
|
|
"""
|
|
Helper function: if llm_value is None, we load environment variables or fallback default model.
|
|
"""
|
|
model_name = (
|
|
os.environ.get("OPENAI_MODEL_NAME")
|
|
or os.environ.get("MODEL")
|
|
or DEFAULT_LLM_MODEL
|
|
)
|
|
|
|
# Initialize parameters with correct types
|
|
model: str = model_name
|
|
temperature: Optional[float] = None
|
|
max_tokens: Optional[int] = None
|
|
max_completion_tokens: Optional[int] = None
|
|
logprobs: Optional[int] = None
|
|
timeout: Optional[float] = None
|
|
api_key: Optional[str] = None
|
|
base_url: Optional[str] = None
|
|
api_version: Optional[str] = None
|
|
presence_penalty: Optional[float] = None
|
|
frequency_penalty: Optional[float] = None
|
|
top_p: Optional[float] = None
|
|
n: Optional[int] = None
|
|
stop: Optional[Union[str, List[str]]] = None
|
|
logit_bias: Optional[Dict[int, float]] = None
|
|
response_format: Optional[Dict[str, Any]] = None
|
|
seed: Optional[int] = None
|
|
top_logprobs: Optional[int] = None
|
|
callbacks: List[Any] = []
|
|
|
|
# Optional base URL from env
|
|
base_url = (
|
|
os.environ.get("BASE_URL")
|
|
or os.environ.get("OPENAI_API_BASE")
|
|
or os.environ.get("OPENAI_BASE_URL")
|
|
)
|
|
|
|
api_base = os.environ.get("API_BASE") or os.environ.get("AZURE_API_BASE")
|
|
|
|
# Synchronize base_url and api_base if one is populated and the other is not
|
|
if base_url and not api_base:
|
|
api_base = base_url
|
|
elif api_base and not base_url:
|
|
base_url = api_base
|
|
|
|
# Initialize llm_params dictionary
|
|
llm_params: Dict[str, Any] = {
|
|
"model": model,
|
|
"temperature": temperature,
|
|
"max_tokens": max_tokens,
|
|
"max_completion_tokens": max_completion_tokens,
|
|
"logprobs": logprobs,
|
|
"timeout": timeout,
|
|
"api_key": api_key,
|
|
"base_url": base_url,
|
|
"api_base": api_base,
|
|
"api_version": api_version,
|
|
"presence_penalty": presence_penalty,
|
|
"frequency_penalty": frequency_penalty,
|
|
"top_p": top_p,
|
|
"n": n,
|
|
"stop": stop,
|
|
"logit_bias": logit_bias,
|
|
"response_format": response_format,
|
|
"seed": seed,
|
|
"top_logprobs": top_logprobs,
|
|
"callbacks": callbacks,
|
|
}
|
|
|
|
UNACCEPTED_ATTRIBUTES = [
|
|
"AWS_ACCESS_KEY_ID",
|
|
"AWS_SECRET_ACCESS_KEY",
|
|
"AWS_REGION_NAME",
|
|
]
|
|
set_provider = model_name.split("/")[0] if "/" in model_name else "openai"
|
|
|
|
if set_provider in ENV_VARS:
|
|
env_vars_for_provider = ENV_VARS[set_provider]
|
|
if isinstance(env_vars_for_provider, (list, tuple)):
|
|
for env_var in env_vars_for_provider:
|
|
key_name = env_var.get("key_name")
|
|
if key_name and key_name not in UNACCEPTED_ATTRIBUTES:
|
|
env_value = os.environ.get(key_name)
|
|
if env_value:
|
|
# Map environment variable names to recognized parameters
|
|
param_key = _normalize_key_name(key_name.lower())
|
|
llm_params[param_key] = env_value
|
|
elif isinstance(env_var, dict):
|
|
if env_var.get("default", False):
|
|
for key, value in env_var.items():
|
|
if key not in ["prompt", "key_name", "default"]:
|
|
llm_params[key.lower()] = value
|
|
else:
|
|
print(
|
|
f"Expected env_var to be a dictionary, but got {type(env_var)}"
|
|
)
|
|
|
|
# Remove None values
|
|
llm_params = {k: v for k, v in llm_params.items() if v is not None}
|
|
|
|
# Try creating the LLM
|
|
try:
|
|
new_llm = LLM(**llm_params)
|
|
return new_llm
|
|
except Exception as e:
|
|
print(
|
|
f"Error instantiating LLM from environment/fallback: {type(e).__name__}: {e}"
|
|
)
|
|
return None
|
|
|
|
|
|
def _normalize_key_name(key_name: str) -> str:
|
|
"""
|
|
Maps environment variable names to recognized litellm parameter keys,
|
|
using patterns from LITELLM_PARAMS.
|
|
"""
|
|
for pattern in LITELLM_PARAMS:
|
|
if pattern in key_name:
|
|
return pattern
|
|
return key_name
|