Files
crewAI/tests/memory/test_long_term_memory.py
Greyson LaLonde 641c156c17
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
fix: address flaky tests (#3363)
fix: resolve flaky tests and race conditions in test suite

- Fix telemetry/event tests by patching class methods instead of instances
- Use unique temp files/directories to prevent CI race conditions
- Reset singleton state between tests
- Mock embedchain.Client.setup() to prevent JSON corruption
- Rename test files to test_*.py convention
- Move agent tests to tests/agents directory
- Fix repeated tool usage detection
- Remove database-dependent tools causing initialization errors
2025-08-20 13:34:09 -04:00

139 lines
4.4 KiB
Python

import pytest
from unittest.mock import ANY
from collections import defaultdict
from crewai.utilities.events import crewai_event_bus
from crewai.memory.long_term.long_term_memory import LongTermMemory
from crewai.memory.long_term.long_term_memory_item import LongTermMemoryItem
from crewai.utilities.events.memory_events import (
MemorySaveStartedEvent,
MemorySaveCompletedEvent,
MemoryQueryStartedEvent,
MemoryQueryCompletedEvent,
)
@pytest.fixture
def long_term_memory():
"""Fixture to create a LongTermMemory instance"""
return LongTermMemory()
def test_long_term_memory_save_events(long_term_memory):
events = defaultdict(list)
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(MemorySaveStartedEvent)
def on_save_started(source, event):
events["MemorySaveStartedEvent"].append(event)
@crewai_event_bus.on(MemorySaveCompletedEvent)
def on_save_completed(source, event):
events["MemorySaveCompletedEvent"].append(event)
memory = LongTermMemoryItem(
agent="test_agent",
task="test_task",
expected_output="test_output",
datetime="test_datetime",
quality=0.5,
metadata={"task": "test_task", "quality": 0.5},
)
long_term_memory.save(memory)
assert len(events["MemorySaveStartedEvent"]) == 1
assert len(events["MemorySaveCompletedEvent"]) == 1
assert len(events["MemorySaveFailedEvent"]) == 0
assert dict(events["MemorySaveStartedEvent"][0]) == {
"timestamp": ANY,
"type": "memory_save_started",
"source_fingerprint": None,
"source_type": "long_term_memory",
"fingerprint_metadata": None,
"value": "test_task",
"metadata": {"task": "test_task", "quality": 0.5},
"agent_role": "test_agent",
}
assert dict(events["MemorySaveCompletedEvent"][0]) == {
"timestamp": ANY,
"type": "memory_save_completed",
"source_fingerprint": None,
"source_type": "long_term_memory",
"fingerprint_metadata": None,
"value": "test_task",
"metadata": {
"task": "test_task",
"quality": 0.5,
"agent": "test_agent",
"expected_output": "test_output",
},
"agent_role": "test_agent",
"save_time_ms": ANY,
}
def test_long_term_memory_search_events(long_term_memory):
events = defaultdict(list)
with crewai_event_bus.scoped_handlers():
@crewai_event_bus.on(MemoryQueryStartedEvent)
def on_search_started(source, event):
events["MemoryQueryStartedEvent"].append(event)
@crewai_event_bus.on(MemoryQueryCompletedEvent)
def on_search_completed(source, event):
events["MemoryQueryCompletedEvent"].append(event)
test_query = "test query"
long_term_memory.search(test_query, latest_n=5)
assert len(events["MemoryQueryStartedEvent"]) == 1
assert len(events["MemoryQueryCompletedEvent"]) == 1
assert len(events["MemoryQueryFailedEvent"]) == 0
assert dict(events["MemoryQueryStartedEvent"][0]) == {
"timestamp": ANY,
"type": "memory_query_started",
"source_fingerprint": None,
"source_type": "long_term_memory",
"fingerprint_metadata": None,
"query": "test query",
"limit": 5,
"score_threshold": None,
}
assert dict(events["MemoryQueryCompletedEvent"][0]) == {
"timestamp": ANY,
"type": "memory_query_completed",
"source_fingerprint": None,
"source_type": "long_term_memory",
"fingerprint_metadata": None,
"query": "test query",
"results": None,
"limit": 5,
"score_threshold": None,
"query_time_ms": ANY,
}
def test_save_and_search(long_term_memory):
memory = LongTermMemoryItem(
agent="test_agent",
task="test_task",
expected_output="test_output",
datetime="test_datetime",
quality=0.5,
metadata={"task": "test_task", "quality": 0.5},
)
long_term_memory.save(memory)
find = long_term_memory.search("test_task", latest_n=5)[0]
assert find["score"] == 0.5
assert find["datetime"] == "test_datetime"
assert find["metadata"]["agent"] == "test_agent"
assert find["metadata"]["quality"] == 0.5
assert find["metadata"]["task"] == "test_task"
assert find["metadata"]["expected_output"] == "test_output"