mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 15:48:29 +00:00
Some checks failed
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Consolidates pytest config, standardizes env handling, reorganizes cassette layout, removes outdated VCR configs, improves sync with threading.Condition, updates event-waiting logic, ensures cleanup, regenerates Gemini cassettes, and reverts unintended test changes.
956 lines
31 KiB
Python
956 lines
31 KiB
Python
# Tests for enums
|
|
from enum import Enum
|
|
import json
|
|
import os
|
|
from unittest.mock import MagicMock, Mock, patch
|
|
|
|
from crewai.llm import LLM
|
|
from crewai.utilities.converter import (
|
|
Converter,
|
|
ConverterError,
|
|
convert_to_model,
|
|
convert_with_instructions,
|
|
create_converter,
|
|
generate_model_description,
|
|
get_conversion_instructions,
|
|
handle_partial_json,
|
|
validate_model,
|
|
)
|
|
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
|
|
from pydantic import BaseModel
|
|
import pytest
|
|
|
|
|
|
# Sample Pydantic models for testing
|
|
class EmailResponse(BaseModel):
|
|
previous_message_content: str
|
|
|
|
|
|
class EmailResponses(BaseModel):
|
|
responses: list[EmailResponse]
|
|
|
|
|
|
class SimpleModel(BaseModel):
|
|
name: str
|
|
age: int
|
|
|
|
|
|
class NestedModel(BaseModel):
|
|
id: int
|
|
data: SimpleModel
|
|
|
|
|
|
class Address(BaseModel):
|
|
street: str
|
|
city: str
|
|
zip_code: str
|
|
|
|
|
|
class Person(BaseModel):
|
|
name: str
|
|
age: int
|
|
address: Address
|
|
|
|
|
|
class CustomConverter(Converter):
|
|
pass
|
|
|
|
|
|
# Fixtures
|
|
@pytest.fixture
|
|
def mock_agent() -> Mock:
|
|
agent = Mock()
|
|
agent.function_calling_llm = None
|
|
agent.llm = Mock()
|
|
return agent
|
|
|
|
|
|
# Tests for convert_to_model
|
|
def test_convert_to_model_with_valid_json() -> None:
|
|
result = '{"name": "John", "age": 30}'
|
|
output = convert_to_model(result, SimpleModel, None, None)
|
|
assert isinstance(output, SimpleModel)
|
|
assert output.name == "John"
|
|
assert output.age == 30
|
|
|
|
|
|
def test_convert_to_model_with_invalid_json() -> None:
|
|
result = '{"name": "John", "age": "thirty"}'
|
|
with patch("crewai.utilities.converter.handle_partial_json") as mock_handle:
|
|
mock_handle.return_value = "Fallback result"
|
|
output = convert_to_model(result, SimpleModel, None, None)
|
|
assert output == "Fallback result"
|
|
|
|
|
|
def test_convert_to_model_with_no_model() -> None:
|
|
result = "Plain text"
|
|
output = convert_to_model(result, None, None, None)
|
|
assert output == "Plain text"
|
|
|
|
|
|
def test_convert_to_model_with_special_characters() -> None:
|
|
json_string_test = """
|
|
{
|
|
"responses": [
|
|
{
|
|
"previous_message_content": "Hi Tom,\r\n\r\nNiamh has chosen the Mika phonics on"
|
|
}
|
|
]
|
|
}
|
|
"""
|
|
output = convert_to_model(json_string_test, EmailResponses, None, None)
|
|
assert isinstance(output, EmailResponses)
|
|
assert len(output.responses) == 1
|
|
assert (
|
|
output.responses[0].previous_message_content
|
|
== "Hi Tom,\r\n\r\nNiamh has chosen the Mika phonics on"
|
|
)
|
|
|
|
|
|
def test_convert_to_model_with_escaped_special_characters() -> None:
|
|
json_string_test = json.dumps(
|
|
{
|
|
"responses": [
|
|
{
|
|
"previous_message_content": "Hi Tom,\r\n\r\nNiamh has chosen the Mika phonics on"
|
|
}
|
|
]
|
|
}
|
|
)
|
|
output = convert_to_model(json_string_test, EmailResponses, None, None)
|
|
assert isinstance(output, EmailResponses)
|
|
assert len(output.responses) == 1
|
|
assert (
|
|
output.responses[0].previous_message_content
|
|
== "Hi Tom,\r\n\r\nNiamh has chosen the Mika phonics on"
|
|
)
|
|
|
|
|
|
def test_convert_to_model_with_multiple_special_characters() -> None:
|
|
json_string_test = """
|
|
{
|
|
"responses": [
|
|
{
|
|
"previous_message_content": "Line 1\r\nLine 2\tTabbed\nLine 3\r\n\rEscaped newline"
|
|
}
|
|
]
|
|
}
|
|
"""
|
|
output = convert_to_model(json_string_test, EmailResponses, None, None)
|
|
assert isinstance(output, EmailResponses)
|
|
assert len(output.responses) == 1
|
|
assert (
|
|
output.responses[0].previous_message_content
|
|
== "Line 1\r\nLine 2\tTabbed\nLine 3\r\n\rEscaped newline"
|
|
)
|
|
|
|
|
|
# Tests for validate_model
|
|
def test_validate_model_pydantic_output() -> None:
|
|
result = '{"name": "Alice", "age": 25}'
|
|
output = validate_model(result, SimpleModel, False)
|
|
assert isinstance(output, SimpleModel)
|
|
assert output.name == "Alice"
|
|
assert output.age == 25
|
|
|
|
|
|
def test_validate_model_json_output() -> None:
|
|
result = '{"name": "Bob", "age": 40}'
|
|
output = validate_model(result, SimpleModel, True)
|
|
assert isinstance(output, dict)
|
|
assert output == {"name": "Bob", "age": 40}
|
|
|
|
|
|
# Tests for handle_partial_json
|
|
def test_handle_partial_json_with_valid_partial() -> None:
|
|
result = 'Some text {"name": "Charlie", "age": 35} more text'
|
|
output = handle_partial_json(result, SimpleModel, False, None)
|
|
assert isinstance(output, SimpleModel)
|
|
assert output.name == "Charlie"
|
|
assert output.age == 35
|
|
|
|
|
|
def test_handle_partial_json_with_invalid_partial(mock_agent: Mock) -> None:
|
|
result = "No valid JSON here"
|
|
with patch("crewai.utilities.converter.convert_with_instructions") as mock_convert:
|
|
mock_convert.return_value = "Converted result"
|
|
output = handle_partial_json(result, SimpleModel, False, mock_agent)
|
|
assert output == "Converted result"
|
|
|
|
|
|
# Tests for convert_with_instructions
|
|
@patch("crewai.utilities.converter.create_converter")
|
|
@patch("crewai.utilities.converter.get_conversion_instructions")
|
|
def test_convert_with_instructions_success(
|
|
mock_get_instructions: Mock, mock_create_converter: Mock, mock_agent: Mock
|
|
) -> None:
|
|
mock_get_instructions.return_value = "Instructions"
|
|
mock_converter = Mock()
|
|
mock_converter.to_pydantic.return_value = SimpleModel(name="David", age=50)
|
|
mock_create_converter.return_value = mock_converter
|
|
|
|
result = "Some text to convert"
|
|
output = convert_with_instructions(result, SimpleModel, False, mock_agent)
|
|
|
|
assert isinstance(output, SimpleModel)
|
|
assert output.name == "David"
|
|
assert output.age == 50
|
|
|
|
|
|
@patch("crewai.utilities.converter.create_converter")
|
|
@patch("crewai.utilities.converter.get_conversion_instructions")
|
|
def test_convert_with_instructions_failure(
|
|
mock_get_instructions: Mock, mock_create_converter: Mock, mock_agent: Mock
|
|
) -> None:
|
|
mock_get_instructions.return_value = "Instructions"
|
|
mock_converter = Mock()
|
|
mock_converter.to_pydantic.return_value = ConverterError("Conversion failed")
|
|
mock_create_converter.return_value = mock_converter
|
|
|
|
result = "Some text to convert"
|
|
with patch("crewai.utilities.converter.Printer") as mock_printer:
|
|
output = convert_with_instructions(result, SimpleModel, False, mock_agent)
|
|
assert output == result
|
|
mock_printer.return_value.print.assert_called_once()
|
|
|
|
|
|
# Tests for get_conversion_instructions
|
|
def test_get_conversion_instructions_gpt() -> None:
|
|
llm = LLM(model="gpt-4o-mini")
|
|
with patch.object(LLM, "supports_function_calling") as supports_function_calling:
|
|
supports_function_calling.return_value = True
|
|
instructions = get_conversion_instructions(SimpleModel, llm)
|
|
# Now using OpenAPI schema format for all models
|
|
assert "Ensure your final answer strictly adheres to the following OpenAPI schema:" in instructions
|
|
assert '"type": "json_schema"' in instructions
|
|
assert '"name": "SimpleModel"' in instructions
|
|
assert "Do not include the OpenAPI schema in the final output" in instructions
|
|
|
|
|
|
def test_get_conversion_instructions_non_gpt() -> None:
|
|
llm = LLM(model="ollama/llama3.1", base_url="http://localhost:11434")
|
|
with patch.object(LLM, "supports_function_calling", return_value=False):
|
|
instructions = get_conversion_instructions(SimpleModel, llm)
|
|
# Now using OpenAPI schema format for all models
|
|
assert "Ensure your final answer strictly adheres to the following OpenAPI schema:" in instructions
|
|
assert '"type": "json_schema"' in instructions
|
|
assert '"name": "SimpleModel"' in instructions
|
|
assert "Do not include the OpenAPI schema in the final output" in instructions
|
|
|
|
|
|
# Tests for is_gpt
|
|
def test_supports_function_calling_true() -> None:
|
|
llm = LLM(model="gpt-4o")
|
|
assert llm.supports_function_calling() is True
|
|
|
|
|
|
def test_supports_function_calling_false() -> None:
|
|
llm = LLM(model="non-existent-model", is_litellm=True)
|
|
assert llm.supports_function_calling() is False
|
|
|
|
|
|
def test_create_converter_with_mock_agent() -> None:
|
|
mock_agent = MagicMock()
|
|
mock_agent.get_output_converter.return_value = MagicMock(spec=Converter)
|
|
|
|
converter = create_converter(
|
|
agent=mock_agent,
|
|
llm=Mock(),
|
|
text="Sample",
|
|
model=SimpleModel,
|
|
instructions="Convert",
|
|
)
|
|
|
|
assert isinstance(converter, Converter)
|
|
mock_agent.get_output_converter.assert_called_once()
|
|
|
|
|
|
def test_create_converter_with_custom_converter() -> None:
|
|
converter = create_converter(
|
|
converter_cls=CustomConverter,
|
|
llm=LLM(model="gpt-4o-mini"),
|
|
text="Sample",
|
|
model=SimpleModel,
|
|
instructions="Convert",
|
|
)
|
|
|
|
assert isinstance(converter, CustomConverter)
|
|
|
|
|
|
def test_create_converter_fails_without_agent_or_converter_cls() -> None:
|
|
with pytest.raises(
|
|
ValueError, match="Either agent or converter_cls must be provided"
|
|
):
|
|
create_converter(
|
|
llm=Mock(), text="Sample", model=SimpleModel, instructions="Convert"
|
|
)
|
|
|
|
|
|
def test_generate_model_description_simple_model() -> None:
|
|
description = generate_model_description(SimpleModel)
|
|
# generate_model_description now returns a JSON schema dict
|
|
assert isinstance(description, dict)
|
|
assert description["type"] == "json_schema"
|
|
assert description["json_schema"]["name"] == "SimpleModel"
|
|
assert description["json_schema"]["strict"] is True
|
|
assert "name" in description["json_schema"]["schema"]["properties"]
|
|
assert "age" in description["json_schema"]["schema"]["properties"]
|
|
|
|
|
|
def test_generate_model_description_nested_model() -> None:
|
|
description = generate_model_description(NestedModel)
|
|
# generate_model_description now returns a JSON schema dict
|
|
assert isinstance(description, dict)
|
|
assert description["type"] == "json_schema"
|
|
assert description["json_schema"]["name"] == "NestedModel"
|
|
assert description["json_schema"]["strict"] is True
|
|
assert "id" in description["json_schema"]["schema"]["properties"]
|
|
assert "data" in description["json_schema"]["schema"]["properties"]
|
|
|
|
|
|
def test_generate_model_description_optional_field() -> None:
|
|
class ModelWithOptionalField(BaseModel):
|
|
name: str
|
|
age: int | None
|
|
|
|
description = generate_model_description(ModelWithOptionalField)
|
|
# generate_model_description now returns a JSON schema dict
|
|
assert isinstance(description, dict)
|
|
assert description["type"] == "json_schema"
|
|
assert description["json_schema"]["name"] == "ModelWithOptionalField"
|
|
assert description["json_schema"]["strict"] is True
|
|
|
|
|
|
def test_generate_model_description_list_field() -> None:
|
|
class ModelWithListField(BaseModel):
|
|
items: list[int]
|
|
|
|
description = generate_model_description(ModelWithListField)
|
|
# generate_model_description now returns a JSON schema dict
|
|
assert isinstance(description, dict)
|
|
assert description["type"] == "json_schema"
|
|
assert description["json_schema"]["name"] == "ModelWithListField"
|
|
assert description["json_schema"]["strict"] is True
|
|
|
|
|
|
def test_generate_model_description_dict_field() -> None:
|
|
class ModelWithDictField(BaseModel):
|
|
attributes: dict[str, int]
|
|
|
|
description = generate_model_description(ModelWithDictField)
|
|
# generate_model_description now returns a JSON schema dict
|
|
assert isinstance(description, dict)
|
|
assert description["type"] == "json_schema"
|
|
assert description["json_schema"]["name"] == "ModelWithDictField"
|
|
assert description["json_schema"]["strict"] is True
|
|
|
|
|
|
@pytest.mark.vcr()
|
|
def test_convert_with_instructions() -> None:
|
|
llm = LLM(model="gpt-4o-mini")
|
|
sample_text = "Name: Alice, Age: 30"
|
|
|
|
instructions = get_conversion_instructions(SimpleModel, llm)
|
|
converter = Converter(
|
|
llm=llm,
|
|
text=sample_text,
|
|
model=SimpleModel,
|
|
instructions=instructions,
|
|
)
|
|
|
|
# Act
|
|
output = converter.to_pydantic()
|
|
|
|
# Assert
|
|
assert isinstance(output, SimpleModel)
|
|
assert output.name == "Alice"
|
|
assert output.age == 30
|
|
|
|
|
|
@pytest.mark.vcr()
|
|
def test_converter_with_llama3_2_model() -> None:
|
|
llm = LLM(model="openrouter/meta-llama/llama-3.2-3b-instruct")
|
|
sample_text = "Name: Alice Llama, Age: 30"
|
|
instructions = get_conversion_instructions(SimpleModel, llm)
|
|
converter = Converter(
|
|
llm=llm,
|
|
text=sample_text,
|
|
model=SimpleModel,
|
|
instructions=instructions,
|
|
)
|
|
output = converter.to_pydantic()
|
|
assert isinstance(output, SimpleModel)
|
|
assert output.name == "Alice Llama"
|
|
assert output.age == 30
|
|
|
|
|
|
def test_converter_with_llama3_1_model() -> None:
|
|
llm = Mock(spec=LLM)
|
|
llm.supports_function_calling.return_value = True
|
|
llm.call.return_value = '{"name": "Alice Llama", "age": 30}'
|
|
|
|
sample_text = "Name: Alice Llama, Age: 30"
|
|
instructions = get_conversion_instructions(SimpleModel, llm)
|
|
converter = Converter(
|
|
llm=llm,
|
|
text=sample_text,
|
|
model=SimpleModel,
|
|
instructions=instructions,
|
|
)
|
|
output = converter.to_pydantic()
|
|
assert isinstance(output, SimpleModel)
|
|
assert output.name == "Alice Llama"
|
|
assert output.age == 30
|
|
|
|
|
|
@pytest.mark.vcr()
|
|
def test_converter_with_nested_model() -> None:
|
|
llm = LLM(model="gpt-4o-mini")
|
|
sample_text = "Name: John Doe\nAge: 30\nAddress: 123 Main St, Anytown, 12345"
|
|
|
|
instructions = get_conversion_instructions(Person, llm)
|
|
converter = Converter(
|
|
llm=llm,
|
|
text=sample_text,
|
|
model=Person,
|
|
instructions=instructions,
|
|
)
|
|
|
|
output = converter.to_pydantic()
|
|
|
|
assert isinstance(output, Person)
|
|
assert output.name == "John Doe"
|
|
assert output.age == 30
|
|
assert isinstance(output.address, Address)
|
|
assert output.address.street == "123 Main St"
|
|
assert output.address.city == "Anytown"
|
|
assert output.address.zip_code == "12345"
|
|
|
|
|
|
# Tests for error handling
|
|
def test_converter_error_handling() -> None:
|
|
llm = Mock(spec=LLM)
|
|
llm.supports_function_calling.return_value = False
|
|
llm.call.return_value = "Invalid JSON"
|
|
sample_text = "Name: Alice, Age: 30"
|
|
|
|
instructions = get_conversion_instructions(SimpleModel, llm)
|
|
converter = Converter(
|
|
llm=llm,
|
|
text=sample_text,
|
|
model=SimpleModel,
|
|
instructions=instructions,
|
|
)
|
|
|
|
with pytest.raises(ConverterError) as exc_info:
|
|
converter.to_pydantic()
|
|
|
|
assert "Failed to convert text into a Pydantic model" in str(exc_info.value)
|
|
|
|
|
|
# Tests for retry logic
|
|
def test_converter_retry_logic() -> None:
|
|
llm = Mock(spec=LLM)
|
|
llm.supports_function_calling.return_value = False
|
|
llm.call.side_effect = [
|
|
"Invalid JSON",
|
|
"Still invalid",
|
|
'{"name": "Retry Alice", "age": 30}',
|
|
]
|
|
sample_text = "Name: Retry Alice, Age: 30"
|
|
|
|
instructions = get_conversion_instructions(SimpleModel, llm)
|
|
converter = Converter(
|
|
llm=llm,
|
|
text=sample_text,
|
|
model=SimpleModel,
|
|
instructions=instructions,
|
|
max_attempts=3,
|
|
)
|
|
|
|
output = converter.to_pydantic()
|
|
|
|
assert isinstance(output, SimpleModel)
|
|
assert output.name == "Retry Alice"
|
|
assert output.age == 30
|
|
assert llm.call.call_count == 3
|
|
|
|
|
|
# Tests for optional fields
|
|
def test_converter_with_optional_fields() -> None:
|
|
class OptionalModel(BaseModel):
|
|
name: str
|
|
age: int | None
|
|
|
|
llm = Mock(spec=LLM)
|
|
llm.supports_function_calling.return_value = False
|
|
# Simulate the LLM's response with 'age' explicitly set to null
|
|
llm.call.return_value = '{"name": "Bob", "age": null}'
|
|
sample_text = "Name: Bob, age: None"
|
|
|
|
instructions = get_conversion_instructions(OptionalModel, llm)
|
|
converter = Converter(
|
|
llm=llm,
|
|
text=sample_text,
|
|
model=OptionalModel,
|
|
instructions=instructions,
|
|
)
|
|
|
|
output = converter.to_pydantic()
|
|
|
|
assert isinstance(output, OptionalModel)
|
|
assert output.name == "Bob"
|
|
assert output.age is None
|
|
|
|
|
|
# Tests for list fields
|
|
def test_converter_with_list_field() -> None:
|
|
class ListModel(BaseModel):
|
|
items: list[int]
|
|
|
|
llm = Mock(spec=LLM)
|
|
llm.supports_function_calling.return_value = False
|
|
llm.call.return_value = '{"items": [1, 2, 3]}'
|
|
sample_text = "Items: 1, 2, 3"
|
|
|
|
instructions = get_conversion_instructions(ListModel, llm)
|
|
converter = Converter(
|
|
llm=llm,
|
|
text=sample_text,
|
|
model=ListModel,
|
|
instructions=instructions,
|
|
)
|
|
|
|
output = converter.to_pydantic()
|
|
|
|
assert isinstance(output, ListModel)
|
|
assert output.items == [1, 2, 3]
|
|
|
|
|
|
def test_converter_with_enum() -> None:
|
|
class Color(Enum):
|
|
RED = "red"
|
|
GREEN = "green"
|
|
BLUE = "blue"
|
|
|
|
class EnumModel(BaseModel):
|
|
name: str
|
|
color: Color
|
|
|
|
llm = Mock(spec=LLM)
|
|
llm.supports_function_calling.return_value = False
|
|
llm.call.return_value = '{"name": "Alice", "color": "red"}'
|
|
sample_text = "Name: Alice, Color: Red"
|
|
|
|
instructions = get_conversion_instructions(EnumModel, llm)
|
|
converter = Converter(
|
|
llm=llm,
|
|
text=sample_text,
|
|
model=EnumModel,
|
|
instructions=instructions,
|
|
)
|
|
|
|
output = converter.to_pydantic()
|
|
|
|
assert isinstance(output, EnumModel)
|
|
assert output.name == "Alice"
|
|
assert output.color == Color.RED
|
|
|
|
|
|
# Tests for ambiguous input
|
|
def test_converter_with_ambiguous_input() -> None:
|
|
llm = Mock(spec=LLM)
|
|
llm.supports_function_calling.return_value = False
|
|
llm.call.return_value = '{"name": "Charlie", "age": "Not an age"}'
|
|
sample_text = "Charlie is thirty years old"
|
|
|
|
instructions = get_conversion_instructions(SimpleModel, llm)
|
|
converter = Converter(
|
|
llm=llm,
|
|
text=sample_text,
|
|
model=SimpleModel,
|
|
instructions=instructions,
|
|
)
|
|
|
|
with pytest.raises(ConverterError) as exc_info:
|
|
converter.to_pydantic()
|
|
|
|
assert "failed to convert text into a pydantic model" in str(exc_info.value).lower()
|
|
|
|
|
|
# Tests for function calling support
|
|
def test_converter_with_function_calling() -> None:
|
|
llm = Mock(spec=LLM)
|
|
llm.supports_function_calling.return_value = True
|
|
# Mock the llm.call to return a valid JSON string
|
|
llm.call.return_value = '{"name": "Eve", "age": 35}'
|
|
|
|
converter = Converter(
|
|
llm=llm,
|
|
text="Name: Eve, Age: 35",
|
|
model=SimpleModel,
|
|
instructions="Convert this text.",
|
|
)
|
|
|
|
output = converter.to_pydantic()
|
|
|
|
assert isinstance(output, SimpleModel)
|
|
assert output.name == "Eve"
|
|
assert output.age == 35
|
|
|
|
# Verify llm.call was called with correct parameters
|
|
llm.call.assert_called_once()
|
|
call_args = llm.call.call_args
|
|
assert call_args[1]["response_model"] == SimpleModel
|
|
|
|
|
|
def test_generate_model_description_union_field() -> None:
|
|
class UnionModel(BaseModel):
|
|
field: int | str | None
|
|
|
|
description = generate_model_description(UnionModel)
|
|
# generate_model_description now returns a JSON schema dict
|
|
assert isinstance(description, dict)
|
|
assert description["type"] == "json_schema"
|
|
assert description["json_schema"]["name"] == "UnionModel"
|
|
assert description["json_schema"]["strict"] is True
|
|
|
|
def test_internal_instructor_with_openai_provider() -> None:
|
|
"""Test InternalInstructor with OpenAI provider using registry pattern."""
|
|
from crewai.utilities.internal_instructor import InternalInstructor
|
|
|
|
# Mock LLM with OpenAI provider
|
|
mock_llm = Mock()
|
|
mock_llm.is_litellm = False
|
|
mock_llm.model = "gpt-4o"
|
|
mock_llm.provider = "openai"
|
|
|
|
# Mock instructor client
|
|
mock_client = Mock()
|
|
mock_client.chat.completions.create.return_value = SimpleModel(name="Test", age=25)
|
|
|
|
# Patch the instructor import at the method level
|
|
with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client:
|
|
mock_create_client.return_value = mock_client
|
|
|
|
instructor = InternalInstructor(
|
|
content="Test content",
|
|
model=SimpleModel,
|
|
llm=mock_llm
|
|
)
|
|
|
|
result = instructor.to_pydantic()
|
|
|
|
assert isinstance(result, SimpleModel)
|
|
assert result.name == "Test"
|
|
assert result.age == 25
|
|
# Verify the method was called with the correct LLM
|
|
mock_create_client.assert_called_once()
|
|
|
|
|
|
def test_internal_instructor_with_anthropic_provider() -> None:
|
|
"""Test InternalInstructor with Anthropic provider using registry pattern."""
|
|
from crewai.utilities.internal_instructor import InternalInstructor
|
|
|
|
# Mock LLM with Anthropic provider
|
|
mock_llm = Mock()
|
|
mock_llm.is_litellm = False
|
|
mock_llm.model = "claude-3-5-sonnet-20241022"
|
|
mock_llm.provider = "anthropic"
|
|
|
|
# Mock instructor client
|
|
mock_client = Mock()
|
|
mock_client.chat.completions.create.return_value = SimpleModel(name="Bob", age=25)
|
|
|
|
# Patch the instructor import at the method level
|
|
with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client:
|
|
mock_create_client.return_value = mock_client
|
|
|
|
instructor = InternalInstructor(
|
|
content="Name: Bob, Age: 25",
|
|
model=SimpleModel,
|
|
llm=mock_llm
|
|
)
|
|
|
|
result = instructor.to_pydantic()
|
|
|
|
assert isinstance(result, SimpleModel)
|
|
assert result.name == "Bob"
|
|
assert result.age == 25
|
|
# Verify the method was called with the correct LLM
|
|
mock_create_client.assert_called_once()
|
|
|
|
|
|
def test_factory_pattern_registry_extensibility() -> None:
|
|
"""Test that the factory pattern registry works with different providers."""
|
|
from crewai.utilities.internal_instructor import InternalInstructor
|
|
|
|
# Test with OpenAI provider
|
|
mock_llm_openai = Mock()
|
|
mock_llm_openai.is_litellm = False
|
|
mock_llm_openai.model = "gpt-4o-mini"
|
|
mock_llm_openai.provider = "openai"
|
|
|
|
mock_client_openai = Mock()
|
|
mock_client_openai.chat.completions.create.return_value = SimpleModel(name="Alice", age=30)
|
|
|
|
with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client:
|
|
mock_create_client.return_value = mock_client_openai
|
|
|
|
instructor_openai = InternalInstructor(
|
|
content="Name: Alice, Age: 30",
|
|
model=SimpleModel,
|
|
llm=mock_llm_openai
|
|
)
|
|
|
|
result_openai = instructor_openai.to_pydantic()
|
|
|
|
assert isinstance(result_openai, SimpleModel)
|
|
assert result_openai.name == "Alice"
|
|
assert result_openai.age == 30
|
|
|
|
# Test with Anthropic provider
|
|
mock_llm_anthropic = Mock()
|
|
mock_llm_anthropic.is_litellm = False
|
|
mock_llm_anthropic.model = "claude-3-5-sonnet-20241022"
|
|
mock_llm_anthropic.provider = "anthropic"
|
|
|
|
mock_client_anthropic = Mock()
|
|
mock_client_anthropic.chat.completions.create.return_value = SimpleModel(name="Bob", age=25)
|
|
|
|
with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client:
|
|
mock_create_client.return_value = mock_client_anthropic
|
|
|
|
instructor_anthropic = InternalInstructor(
|
|
content="Name: Bob, Age: 25",
|
|
model=SimpleModel,
|
|
llm=mock_llm_anthropic
|
|
)
|
|
|
|
result_anthropic = instructor_anthropic.to_pydantic()
|
|
|
|
assert isinstance(result_anthropic, SimpleModel)
|
|
assert result_anthropic.name == "Bob"
|
|
assert result_anthropic.age == 25
|
|
|
|
# Test with Bedrock provider
|
|
mock_llm_bedrock = Mock()
|
|
mock_llm_bedrock.is_litellm = False
|
|
mock_llm_bedrock.model = "claude-3-5-sonnet-20241022"
|
|
mock_llm_bedrock.provider = "bedrock"
|
|
|
|
mock_client_bedrock = Mock()
|
|
mock_client_bedrock.chat.completions.create.return_value = SimpleModel(name="Charlie", age=35)
|
|
|
|
with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client:
|
|
mock_create_client.return_value = mock_client_bedrock
|
|
|
|
instructor_bedrock = InternalInstructor(
|
|
content="Name: Charlie, Age: 35",
|
|
model=SimpleModel,
|
|
llm=mock_llm_bedrock
|
|
)
|
|
|
|
result_bedrock = instructor_bedrock.to_pydantic()
|
|
|
|
assert isinstance(result_bedrock, SimpleModel)
|
|
assert result_bedrock.name == "Charlie"
|
|
assert result_bedrock.age == 35
|
|
|
|
# Test with Google provider
|
|
mock_llm_google = Mock()
|
|
mock_llm_google.is_litellm = False
|
|
mock_llm_google.model = "gemini-1.5-flash"
|
|
mock_llm_google.provider = "google"
|
|
|
|
mock_client_google = Mock()
|
|
mock_client_google.chat.completions.create.return_value = SimpleModel(name="Diana", age=28)
|
|
|
|
with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client:
|
|
mock_create_client.return_value = mock_client_google
|
|
|
|
instructor_google = InternalInstructor(
|
|
content="Name: Diana, Age: 28",
|
|
model=SimpleModel,
|
|
llm=mock_llm_google
|
|
)
|
|
|
|
result_google = instructor_google.to_pydantic()
|
|
|
|
assert isinstance(result_google, SimpleModel)
|
|
assert result_google.name == "Diana"
|
|
assert result_google.age == 28
|
|
|
|
# Test with Azure provider
|
|
mock_llm_azure = Mock()
|
|
mock_llm_azure.is_litellm = False
|
|
mock_llm_azure.model = "gpt-4o"
|
|
mock_llm_azure.provider = "azure"
|
|
|
|
mock_client_azure = Mock()
|
|
mock_client_azure.chat.completions.create.return_value = SimpleModel(name="Eve", age=32)
|
|
|
|
with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client:
|
|
mock_create_client.return_value = mock_client_azure
|
|
|
|
instructor_azure = InternalInstructor(
|
|
content="Name: Eve, Age: 32",
|
|
model=SimpleModel,
|
|
llm=mock_llm_azure
|
|
)
|
|
|
|
result_azure = instructor_azure.to_pydantic()
|
|
|
|
assert isinstance(result_azure, SimpleModel)
|
|
assert result_azure.name == "Eve"
|
|
assert result_azure.age == 32
|
|
|
|
|
|
def test_internal_instructor_with_bedrock_provider() -> None:
|
|
"""Test InternalInstructor with AWS Bedrock provider using registry pattern."""
|
|
from crewai.utilities.internal_instructor import InternalInstructor
|
|
|
|
# Mock LLM with Bedrock provider
|
|
mock_llm = Mock()
|
|
mock_llm.is_litellm = False
|
|
mock_llm.model = "claude-3-5-sonnet-20241022"
|
|
mock_llm.provider = "bedrock"
|
|
|
|
# Mock instructor client
|
|
mock_client = Mock()
|
|
mock_client.chat.completions.create.return_value = SimpleModel(name="Charlie", age=35)
|
|
|
|
# Patch the instructor import at the method level
|
|
with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client:
|
|
mock_create_client.return_value = mock_client
|
|
|
|
instructor = InternalInstructor(
|
|
content="Name: Charlie, Age: 35",
|
|
model=SimpleModel,
|
|
llm=mock_llm
|
|
)
|
|
|
|
result = instructor.to_pydantic()
|
|
|
|
assert isinstance(result, SimpleModel)
|
|
assert result.name == "Charlie"
|
|
assert result.age == 35
|
|
# Verify the method was called with the correct LLM
|
|
mock_create_client.assert_called_once()
|
|
|
|
|
|
def test_internal_instructor_with_gemini_provider() -> None:
|
|
"""Test InternalInstructor with Google Gemini provider using registry pattern."""
|
|
from crewai.utilities.internal_instructor import InternalInstructor
|
|
|
|
# Mock LLM with Gemini provider
|
|
mock_llm = Mock()
|
|
mock_llm.is_litellm = False
|
|
mock_llm.model = "gemini-1.5-flash"
|
|
mock_llm.provider = "google"
|
|
|
|
# Mock instructor client
|
|
mock_client = Mock()
|
|
mock_client.chat.completions.create.return_value = SimpleModel(name="Diana", age=28)
|
|
|
|
# Patch the instructor import at the method level
|
|
with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client:
|
|
mock_create_client.return_value = mock_client
|
|
|
|
instructor = InternalInstructor(
|
|
content="Name: Diana, Age: 28",
|
|
model=SimpleModel,
|
|
llm=mock_llm
|
|
)
|
|
|
|
result = instructor.to_pydantic()
|
|
|
|
assert isinstance(result, SimpleModel)
|
|
assert result.name == "Diana"
|
|
assert result.age == 28
|
|
# Verify the method was called with the correct LLM
|
|
mock_create_client.assert_called_once()
|
|
|
|
|
|
def test_internal_instructor_with_azure_provider() -> None:
|
|
"""Test InternalInstructor with Azure OpenAI provider using registry pattern."""
|
|
from crewai.utilities.internal_instructor import InternalInstructor
|
|
|
|
# Mock LLM with Azure provider
|
|
mock_llm = Mock()
|
|
mock_llm.is_litellm = False
|
|
mock_llm.model = "gpt-4o"
|
|
mock_llm.provider = "azure"
|
|
|
|
# Mock instructor client
|
|
mock_client = Mock()
|
|
mock_client.chat.completions.create.return_value = SimpleModel(name="Eve", age=32)
|
|
|
|
# Patch the instructor import at the method level
|
|
with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client:
|
|
mock_create_client.return_value = mock_client
|
|
|
|
instructor = InternalInstructor(
|
|
content="Name: Eve, Age: 32",
|
|
model=SimpleModel,
|
|
llm=mock_llm
|
|
)
|
|
|
|
result = instructor.to_pydantic()
|
|
|
|
assert isinstance(result, SimpleModel)
|
|
assert result.name == "Eve"
|
|
assert result.age == 32
|
|
# Verify the method was called with the correct LLM
|
|
mock_create_client.assert_called_once()
|
|
|
|
|
|
def test_internal_instructor_unsupported_provider() -> None:
|
|
"""Test InternalInstructor with unsupported provider raises appropriate error."""
|
|
from crewai.utilities.internal_instructor import InternalInstructor
|
|
|
|
# Mock LLM with unsupported provider
|
|
mock_llm = Mock()
|
|
mock_llm.is_litellm = False
|
|
mock_llm.model = "unsupported-model"
|
|
mock_llm.provider = "unsupported"
|
|
|
|
# Mock the _create_instructor_client method to raise an error for unsupported providers
|
|
with patch.object(InternalInstructor, '_create_instructor_client') as mock_create_client:
|
|
mock_create_client.side_effect = Exception("Unsupported provider: unsupported")
|
|
|
|
# This should raise an error when trying to create the instructor client
|
|
with pytest.raises(Exception) as exc_info:
|
|
instructor = InternalInstructor(
|
|
content="Test content",
|
|
model=SimpleModel,
|
|
llm=mock_llm
|
|
)
|
|
instructor.to_pydantic()
|
|
|
|
# Verify it's the expected error
|
|
assert "Unsupported provider" in str(exc_info.value)
|
|
|
|
|
|
def test_internal_instructor_real_unsupported_provider() -> None:
|
|
"""Test InternalInstructor with real unsupported provider using actual instructor library."""
|
|
from crewai.utilities.internal_instructor import InternalInstructor
|
|
|
|
# Mock LLM with unsupported provider that would actually fail with instructor
|
|
mock_llm = Mock()
|
|
mock_llm.is_litellm = False
|
|
mock_llm.model = "unsupported-model"
|
|
mock_llm.provider = "unsupported"
|
|
|
|
# This should raise a ConfigurationError from the real instructor library
|
|
with pytest.raises(Exception) as exc_info:
|
|
instructor = InternalInstructor(
|
|
content="Test content",
|
|
model=SimpleModel,
|
|
llm=mock_llm
|
|
)
|
|
instructor.to_pydantic()
|
|
|
|
# Verify it's a configuration error about unsupported provider
|
|
assert "Unsupported provider" in str(exc_info.value) or "unsupported" in str(exc_info.value).lower()
|