Files
crewAI/docs/en/observability/agentops.mdx
Devin AI 5afe3921d2 feat: restore AgentOps documentation and integration
- Add AgentOps optional dependency to pyproject.toml
- Implement AgentOpsListener with event handling for crew kickoff, tool usage, and task evaluation
- Add comprehensive AgentOps documentation in English, Portuguese, and Korean
- Update docs.json navigation to include AgentOps in observability sections
- Add agentops.log to .gitignore
- Include comprehensive tests for AgentOps integration with mocking
- Ensure graceful handling when AgentOps package is not installed

Addresses issue #3348 by restoring AgentOps integration removed in PR #3334

Co-Authored-By: João <joao@crewai.com>
2025-08-18 17:47:12 +00:00

185 lines
4.8 KiB
Plaintext

---
title: "AgentOps Integration"
description: "Monitor and analyze your CrewAI agents with AgentOps observability platform"
---
# AgentOps Integration
AgentOps is a powerful observability platform designed specifically for AI agents. It provides comprehensive monitoring, analytics, and debugging capabilities for your CrewAI crews.
## Features
- **Real-time Monitoring**: Track agent performance and behavior in real-time
- **Session Replay**: Review complete agent sessions with detailed execution traces
- **Performance Analytics**: Analyze crew efficiency, tool usage, and task completion rates
- **Error Tracking**: Identify and debug issues in agent workflows
- **Cost Tracking**: Monitor LLM usage and associated costs
- **Team Collaboration**: Share insights and collaborate on agent optimization
## Installation
Install AgentOps alongside CrewAI:
```bash
pip install crewai[agentops]
```
Or install AgentOps separately:
```bash
pip install agentops
```
## Setup
1. **Get your API Key**: Sign up at [AgentOps](https://agentops.ai) and get your API key
2. **Configure your environment**: Set your AgentOps API key as an environment variable:
```bash
export AGENTOPS_API_KEY="your-api-key-here"
```
3. **Initialize AgentOps**: Add this to your CrewAI script:
```python
import agentops
from crewai import Agent, Task, Crew
# Initialize AgentOps
agentops.init()
# Your CrewAI code here
agent = Agent(
role="Data Analyst",
goal="Analyze data and provide insights",
backstory="You are an expert data analyst...",
)
task = Task(
description="Analyze the sales data and provide insights",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task],
)
# Run your crew
result = crew.kickoff()
# End the AgentOps session
agentops.end_session("Success")
```
## Automatic Integration
CrewAI automatically integrates with AgentOps when the library is installed. The integration captures:
- **Crew Kickoff Events**: Start and completion of crew executions
- **Tool Usage**: All tool calls and their results
- **Task Evaluations**: Task performance metrics and feedback
- **Error Events**: Any errors that occur during execution
## Configuration Options
You can customize the AgentOps integration:
```python
import agentops
# Configure AgentOps with custom settings
agentops.init(
api_key="your-api-key",
tags=["production", "data-analysis"],
auto_start_session=True,
instrument_llm_calls=True,
)
```
## Viewing Your Data
1. **Dashboard**: Visit the AgentOps dashboard to view your agent sessions
2. **Session Details**: Click on any session to see detailed execution traces
3. **Analytics**: Use the analytics tab to identify performance trends
4. **Errors**: Monitor the errors tab for debugging information
## Best Practices
- **Tag Your Sessions**: Use meaningful tags to organize your agent runs
- **Monitor Costs**: Keep track of LLM usage and associated costs
- **Review Errors**: Regularly check for and address any errors
- **Optimize Performance**: Use analytics to identify bottlenecks and optimization opportunities
## Troubleshooting
### AgentOps Not Recording Data
1. Verify your API key is set correctly
2. Check that AgentOps is properly initialized
3. Ensure you're calling `agentops.end_session()` at the end of your script
### Missing Events
If some events aren't being captured:
1. Make sure you have the latest version of both CrewAI and AgentOps
2. Check that the AgentOps listener is properly registered
3. Review the logs for any error messages
## Example: Complete Integration
```python
import os
import agentops
from crewai import Agent, Task, Crew, Process
# Initialize AgentOps
agentops.init(
api_key=os.getenv("AGENTOPS_API_KEY"),
tags=["example", "tutorial"],
)
# Define your agents
researcher = Agent(
role="Research Specialist",
goal="Conduct thorough research on given topics",
backstory="You are an expert researcher with access to various tools...",
)
writer = Agent(
role="Content Writer",
goal="Create engaging content based on research",
backstory="You are a skilled writer who can transform research into compelling content...",
)
# Define your tasks
research_task = Task(
description="Research the latest trends in AI and machine learning",
agent=researcher,
)
writing_task = Task(
description="Write a blog post about AI trends based on the research",
agent=writer,
)
# Create and run your crew
crew = Crew(
agents=[researcher, writer],
tasks=[research_task, writing_task],
process=Process.sequential,
)
try:
result = crew.kickoff()
print(result)
agentops.end_session("Success")
except Exception as e:
print(f"Error: {e}")
agentops.end_session("Fail")
```
This integration provides comprehensive observability for your CrewAI agents, helping you monitor, debug, and optimize your AI workflows.