mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 15:48:29 +00:00
* feat: emit events abou Agent Eval We are triggering events when an evaluation has started/completed/failed * style: fix type checking issues
246 lines
10 KiB
Python
246 lines
10 KiB
Python
import threading
|
|
from typing import Any
|
|
|
|
from crewai.experimental.evaluation.base_evaluator import AgentEvaluationResult, AggregationStrategy
|
|
from crewai.agent import Agent
|
|
from crewai.task import Task
|
|
from crewai.experimental.evaluation.evaluation_display import EvaluationDisplayFormatter
|
|
from crewai.utilities.events.agent_events import AgentEvaluationStartedEvent, AgentEvaluationCompletedEvent, AgentEvaluationFailedEvent
|
|
from crewai.experimental.evaluation import BaseEvaluator, create_evaluation_callbacks
|
|
from collections.abc import Sequence
|
|
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
|
|
from crewai.utilities.events.utils.console_formatter import ConsoleFormatter
|
|
from crewai.utilities.events.task_events import TaskCompletedEvent
|
|
from crewai.utilities.events.agent_events import LiteAgentExecutionCompletedEvent
|
|
from crewai.experimental.evaluation.base_evaluator import AgentAggregatedEvaluationResult, EvaluationScore, MetricCategory
|
|
|
|
class ExecutionState:
|
|
def __init__(self):
|
|
self.traces = {}
|
|
self.current_agent_id: str | None = None
|
|
self.current_task_id: str | None = None
|
|
self.iteration = 1
|
|
self.iterations_results = {}
|
|
self.agent_evaluators = {}
|
|
|
|
class AgentEvaluator:
|
|
def __init__(
|
|
self,
|
|
agents: list[Agent],
|
|
evaluators: Sequence[BaseEvaluator] | None = None,
|
|
):
|
|
self.agents: list[Agent] = agents
|
|
self.evaluators: Sequence[BaseEvaluator] | None = evaluators
|
|
|
|
self.callback = create_evaluation_callbacks()
|
|
self.console_formatter = ConsoleFormatter()
|
|
self.display_formatter = EvaluationDisplayFormatter()
|
|
|
|
self._thread_local: threading.local = threading.local()
|
|
|
|
for agent in self.agents:
|
|
self._execution_state.agent_evaluators[str(agent.id)] = self.evaluators
|
|
|
|
self._subscribe_to_events()
|
|
|
|
@property
|
|
def _execution_state(self) -> ExecutionState:
|
|
if not hasattr(self._thread_local, 'execution_state'):
|
|
self._thread_local.execution_state = ExecutionState()
|
|
return self._thread_local.execution_state
|
|
|
|
def _subscribe_to_events(self) -> None:
|
|
from typing import cast
|
|
crewai_event_bus.register_handler(TaskCompletedEvent, cast(Any, self._handle_task_completed))
|
|
crewai_event_bus.register_handler(LiteAgentExecutionCompletedEvent, cast(Any, self._handle_lite_agent_completed))
|
|
|
|
def _handle_task_completed(self, source: Any, event: TaskCompletedEvent) -> None:
|
|
assert event.task is not None
|
|
agent = event.task.agent
|
|
if agent and str(getattr(agent, 'id', 'unknown')) in self._execution_state.agent_evaluators:
|
|
self.emit_evaluation_started_event(agent_role=agent.role, agent_id=str(agent.id), task_id=str(event.task.id))
|
|
|
|
state = ExecutionState()
|
|
state.current_agent_id = str(agent.id)
|
|
state.current_task_id = str(event.task.id)
|
|
|
|
assert state.current_agent_id is not None and state.current_task_id is not None
|
|
trace = self.callback.get_trace(state.current_agent_id, state.current_task_id)
|
|
|
|
if not trace:
|
|
return
|
|
|
|
result = self.evaluate(
|
|
agent=agent,
|
|
task=event.task,
|
|
execution_trace=trace,
|
|
final_output=event.output,
|
|
state=state
|
|
)
|
|
|
|
current_iteration = self._execution_state.iteration
|
|
if current_iteration not in self._execution_state.iterations_results:
|
|
self._execution_state.iterations_results[current_iteration] = {}
|
|
|
|
if agent.role not in self._execution_state.iterations_results[current_iteration]:
|
|
self._execution_state.iterations_results[current_iteration][agent.role] = []
|
|
|
|
self._execution_state.iterations_results[current_iteration][agent.role].append(result)
|
|
|
|
def _handle_lite_agent_completed(self, source: object, event: LiteAgentExecutionCompletedEvent) -> None:
|
|
agent_info = event.agent_info
|
|
agent_id = str(agent_info["id"])
|
|
|
|
if agent_id in self._execution_state.agent_evaluators:
|
|
state = ExecutionState()
|
|
state.current_agent_id = agent_id
|
|
state.current_task_id = "lite_task"
|
|
|
|
target_agent = None
|
|
for agent in self.agents:
|
|
if str(agent.id) == agent_id:
|
|
target_agent = agent
|
|
break
|
|
|
|
if not target_agent:
|
|
return
|
|
|
|
assert state.current_agent_id is not None and state.current_task_id is not None
|
|
trace = self.callback.get_trace(state.current_agent_id, state.current_task_id)
|
|
|
|
if not trace:
|
|
return
|
|
|
|
result = self.evaluate(
|
|
agent=target_agent,
|
|
execution_trace=trace,
|
|
final_output=event.output,
|
|
state=state
|
|
)
|
|
|
|
current_iteration = self._execution_state.iteration
|
|
if current_iteration not in self._execution_state.iterations_results:
|
|
self._execution_state.iterations_results[current_iteration] = {}
|
|
|
|
agent_role = target_agent.role
|
|
if agent_role not in self._execution_state.iterations_results[current_iteration]:
|
|
self._execution_state.iterations_results[current_iteration][agent_role] = []
|
|
|
|
self._execution_state.iterations_results[current_iteration][agent_role].append(result)
|
|
|
|
def set_iteration(self, iteration: int) -> None:
|
|
self._execution_state.iteration = iteration
|
|
|
|
def reset_iterations_results(self) -> None:
|
|
self._execution_state.iterations_results = {}
|
|
|
|
def get_evaluation_results(self) -> dict[str, list[AgentEvaluationResult]]:
|
|
if self._execution_state.iterations_results and self._execution_state.iteration in self._execution_state.iterations_results:
|
|
return self._execution_state.iterations_results[self._execution_state.iteration]
|
|
return {}
|
|
|
|
def display_results_with_iterations(self) -> None:
|
|
self.display_formatter.display_summary_results(self._execution_state.iterations_results)
|
|
|
|
def get_agent_evaluation(self, strategy: AggregationStrategy = AggregationStrategy.SIMPLE_AVERAGE, include_evaluation_feedback: bool = True) -> dict[str, AgentAggregatedEvaluationResult]:
|
|
agent_results = {}
|
|
with crewai_event_bus.scoped_handlers():
|
|
task_results = self.get_evaluation_results()
|
|
for agent_role, results in task_results.items():
|
|
if not results:
|
|
continue
|
|
|
|
agent_id = results[0].agent_id
|
|
|
|
aggregated_result = self.display_formatter._aggregate_agent_results(
|
|
agent_id=agent_id,
|
|
agent_role=agent_role,
|
|
results=results,
|
|
strategy=strategy
|
|
)
|
|
|
|
agent_results[agent_role] = aggregated_result
|
|
|
|
|
|
if self._execution_state.iterations_results and self._execution_state.iteration == max(self._execution_state.iterations_results.keys(), default=0):
|
|
self.display_results_with_iterations()
|
|
|
|
if include_evaluation_feedback:
|
|
self.display_evaluation_with_feedback()
|
|
|
|
return agent_results
|
|
|
|
def display_evaluation_with_feedback(self) -> None:
|
|
self.display_formatter.display_evaluation_with_feedback(self._execution_state.iterations_results)
|
|
|
|
def evaluate(
|
|
self,
|
|
agent: Agent,
|
|
execution_trace: dict[str, Any],
|
|
final_output: Any,
|
|
state: ExecutionState,
|
|
task: Task | None = None,
|
|
) -> AgentEvaluationResult:
|
|
result = AgentEvaluationResult(
|
|
agent_id=state.current_agent_id or str(agent.id),
|
|
task_id=state.current_task_id or (str(task.id) if task else "unknown_task")
|
|
)
|
|
|
|
assert self.evaluators is not None
|
|
task_id = str(task.id) if task else None
|
|
for evaluator in self.evaluators:
|
|
try:
|
|
self.emit_evaluation_started_event(agent_role=agent.role, agent_id=str(agent.id), task_id=task_id)
|
|
score = evaluator.evaluate(
|
|
agent=agent,
|
|
task=task,
|
|
execution_trace=execution_trace,
|
|
final_output=final_output
|
|
)
|
|
result.metrics[evaluator.metric_category] = score
|
|
self.emit_evaluation_completed_event(agent_role=agent.role, agent_id=str(agent.id), task_id=task_id, metric_category=evaluator.metric_category, score=score)
|
|
except Exception as e:
|
|
self.emit_evaluation_failed_event(agent_role=agent.role, agent_id=str(agent.id), task_id=task_id, error=str(e))
|
|
self.console_formatter.print(f"Error in {evaluator.metric_category.value} evaluator: {str(e)}")
|
|
|
|
return result
|
|
|
|
def emit_evaluation_started_event(self, agent_role: str, agent_id: str, task_id: str | None = None):
|
|
crewai_event_bus.emit(
|
|
self,
|
|
AgentEvaluationStartedEvent(agent_role=agent_role, agent_id=agent_id, task_id=task_id, iteration=self._execution_state.iteration)
|
|
)
|
|
|
|
def emit_evaluation_completed_event(self, agent_role: str, agent_id: str, task_id: str | None = None, metric_category: MetricCategory | None = None, score: EvaluationScore | None = None):
|
|
crewai_event_bus.emit(
|
|
self,
|
|
AgentEvaluationCompletedEvent(agent_role=agent_role, agent_id=agent_id, task_id=task_id, iteration=self._execution_state.iteration, metric_category=metric_category, score=score)
|
|
)
|
|
|
|
def emit_evaluation_failed_event(self, agent_role: str, agent_id: str, error: str, task_id: str | None = None):
|
|
crewai_event_bus.emit(
|
|
self,
|
|
AgentEvaluationFailedEvent(agent_role=agent_role, agent_id=agent_id, task_id=task_id, iteration=self._execution_state.iteration, error=error)
|
|
)
|
|
|
|
def create_default_evaluator(agents: list[Agent], llm: None = None):
|
|
from crewai.experimental.evaluation import (
|
|
GoalAlignmentEvaluator,
|
|
SemanticQualityEvaluator,
|
|
ToolSelectionEvaluator,
|
|
ParameterExtractionEvaluator,
|
|
ToolInvocationEvaluator,
|
|
ReasoningEfficiencyEvaluator
|
|
)
|
|
|
|
evaluators = [
|
|
GoalAlignmentEvaluator(llm=llm),
|
|
SemanticQualityEvaluator(llm=llm),
|
|
ToolSelectionEvaluator(llm=llm),
|
|
ParameterExtractionEvaluator(llm=llm),
|
|
ToolInvocationEvaluator(llm=llm),
|
|
ReasoningEfficiencyEvaluator(llm=llm),
|
|
]
|
|
|
|
return AgentEvaluator(evaluators=evaluators, agents=agents)
|