Files
crewAI/src/crewai/knowledge/storage/knowledge_storage.py
2025-05-12 13:30:50 +00:00

212 lines
7.2 KiB
Python

import contextlib
import hashlib
import io
import logging
import os
import shutil
from typing import TYPE_CHECKING, Any
import chromadb
import chromadb.errors
from chromadb.api import ClientAPI
from chromadb.config import Settings
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
from crewai.utilities import EmbeddingConfigurator
from crewai.utilities.chromadb import sanitize_collection_name
from crewai.utilities.constants import KNOWLEDGE_DIRECTORY
from crewai.utilities.logger import Logger
from crewai.utilities.paths import db_storage_path
if TYPE_CHECKING:
from chromadb.api.types import OneOrMany
@contextlib.contextmanager
def suppress_logging(
logger_name="chromadb.segment.impl.vector.local_persistent_hnsw",
level=logging.ERROR,
):
logger = logging.getLogger(logger_name)
original_level = logger.getEffectiveLevel()
logger.setLevel(level)
with (
contextlib.redirect_stdout(io.StringIO()),
contextlib.redirect_stderr(io.StringIO()),
contextlib.suppress(UserWarning),
):
yield
logger.setLevel(original_level)
class KnowledgeStorage(BaseKnowledgeStorage):
"""Extends Storage to handle embeddings for memory entries, improving
search efficiency.
"""
collection: chromadb.Collection | None = None
collection_name: str | None = "knowledge"
app: ClientAPI | None = None
def __init__(
self,
embedder: dict[str, Any] | None = None,
collection_name: str | None = None,
) -> None:
self.collection_name = collection_name
self._set_embedder_config(embedder)
def search(
self,
query: list[str],
limit: int = 3,
filter: dict | None = None,
score_threshold: float = 0.35,
) -> list[dict[str, Any]]:
with suppress_logging():
if self.collection:
fetched = self.collection.query(
query_texts=query,
n_results=limit,
where=filter,
)
results = []
for i in range(len(fetched["ids"][0])): # type: ignore
result = {
"id": fetched["ids"][0][i], # type: ignore
"metadata": fetched["metadatas"][0][i], # type: ignore
"context": fetched["documents"][0][i], # type: ignore
"score": fetched["distances"][0][i], # type: ignore
}
if result["score"] >= score_threshold:
results.append(result)
return results
msg = "Collection not initialized"
raise Exception(msg)
def initialize_knowledge_storage(self) -> None:
base_path = os.path.join(db_storage_path(), "knowledge")
chroma_client = chromadb.PersistentClient(
path=base_path,
settings=Settings(allow_reset=True),
)
self.app = chroma_client
try:
collection_name = (
f"knowledge_{self.collection_name}"
if self.collection_name
else "knowledge"
)
if self.app:
self.collection = self.app.get_or_create_collection(
name=sanitize_collection_name(collection_name),
embedding_function=self.embedder,
)
else:
msg = "Vector Database Client not initialized"
raise Exception(msg)
except Exception:
msg = "Failed to create or get collection"
raise Exception(msg)
def reset(self) -> None:
base_path = os.path.join(db_storage_path(), KNOWLEDGE_DIRECTORY)
if not self.app:
self.app = chromadb.PersistentClient(
path=base_path,
settings=Settings(allow_reset=True),
)
self.app.reset()
shutil.rmtree(base_path)
self.app = None
self.collection = None
def save(
self,
documents: list[str],
metadata: dict[str, Any] | list[dict[str, Any]] | None = None,
) -> None:
if not self.collection:
msg = "Collection not initialized"
raise Exception(msg)
try:
# Create a dictionary to store unique documents
unique_docs = {}
# Generate IDs and create a mapping of id -> (document, metadata)
for idx, doc in enumerate(documents):
doc_id = hashlib.sha256(doc.encode("utf-8")).hexdigest()
doc_metadata = None
if metadata is not None:
if isinstance(metadata, list):
doc_metadata = metadata[idx]
else:
doc_metadata = metadata
unique_docs[doc_id] = (doc, doc_metadata)
# Prepare filtered lists for ChromaDB
filtered_docs = []
filtered_metadata = []
filtered_ids = []
# Build the filtered lists
for doc_id, (doc, meta) in unique_docs.items():
filtered_docs.append(doc)
filtered_metadata.append(meta)
filtered_ids.append(doc_id)
# If we have no metadata at all, set it to None
final_metadata: OneOrMany[chromadb.Metadata] | None = (
None if all(m is None for m in filtered_metadata) else filtered_metadata
)
self.collection.upsert(
documents=filtered_docs,
metadatas=final_metadata,
ids=filtered_ids,
)
except chromadb.errors.InvalidDimensionException as e:
Logger(verbose=True).log(
"error",
"Embedding dimension mismatch. This usually happens when mixing different embedding models. Try resetting the collection using `crewai reset-memories -a`",
"red",
)
msg = (
"Embedding dimension mismatch. Make sure you're using the same embedding model "
"across all operations with this collection."
"Try resetting the collection using `crewai reset-memories -a`"
)
raise ValueError(
msg,
) from e
except Exception as e:
Logger(verbose=True).log("error", f"Failed to upsert documents: {e}", "red")
raise
def _create_default_embedding_function(self):
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
return OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small",
)
def _set_embedder_config(self, embedder: dict[str, Any] | None = None) -> None:
"""Set the embedding configuration for the knowledge storage.
Args:
embedder_config (Optional[Dict[str, Any]]): Configuration dictionary for the embedder.
If None or empty, defaults to the default embedding function.
"""
self.embedder = (
EmbeddingConfigurator().configure_embedder(embedder)
if embedder
else self._create_default_embedding_function()
)