Files
crewAI/docs/pt-BR/learn/kickoff-async.mdx
Greyson LaLonde 8e99d490b0 chore: add translated docs for async
* chore: add translated docs for async

* chore: add missing pages
2025-12-10 14:17:10 -05:00

307 lines
9.5 KiB
Plaintext

---
title: Inicie uma Crew de Forma Assíncrona
description: Inicie uma Crew de Forma Assíncrona
icon: rocket-launch
mode: "wide"
---
## Introdução
A CrewAI oferece a capacidade de iniciar uma crew de forma assíncrona, permitindo que você comece a execução da crew de maneira não bloqueante.
Esse recurso é especialmente útil quando você deseja executar múltiplas crews simultaneamente ou quando precisa realizar outras tarefas enquanto a crew está em execução.
O CrewAI oferece duas abordagens para execução assíncrona:
| Método | Tipo | Descrição |
|--------|------|-------------|
| `akickoff()` | Async nativo | Async/await verdadeiro em toda a cadeia de execução |
| `kickoff_async()` | Baseado em thread | Envolve execução síncrona em `asyncio.to_thread` |
<Note>
Para cargas de trabalho de alta concorrência, `akickoff()` é recomendado pois usa async nativo para execução de tasks, operações de memória e recuperação de conhecimento.
</Note>
## Execução Async Nativa com `akickoff()`
O método `akickoff()` fornece execução async nativa verdadeira, usando async/await em toda a cadeia de execução, incluindo execução de tasks, operações de memória e consultas de conhecimento.
### Assinatura do Método
```python Code
async def akickoff(self, inputs: dict) -> CrewOutput:
```
### Parâmetros
- `inputs` (dict): Um dicionário contendo os dados de entrada necessários para as tarefas.
### Retorno
- `CrewOutput`: Um objeto que representa o resultado da execução da crew.
### Exemplo: Execução Async Nativa de Crew
```python Code
import asyncio
from crewai import Crew, Agent, Task
# Criar um agente
coding_agent = Agent(
role="Python Data Analyst",
goal="Analyze data and provide insights using Python",
backstory="You are an experienced data analyst with strong Python skills.",
allow_code_execution=True
)
# Criar uma tarefa
data_analysis_task = Task(
description="Analyze the given dataset and calculate the average age of participants. Ages: {ages}",
agent=coding_agent,
expected_output="The average age of the participants."
)
# Criar uma crew
analysis_crew = Crew(
agents=[coding_agent],
tasks=[data_analysis_task]
)
# Execução async nativa
async def main():
result = await analysis_crew.akickoff(inputs={"ages": [25, 30, 35, 40, 45]})
print("Crew Result:", result)
asyncio.run(main())
```
### Exemplo: Múltiplas Crews Async Nativas
Execute múltiplas crews concorrentemente usando `asyncio.gather()` com async nativo:
```python Code
import asyncio
from crewai import Crew, Agent, Task
coding_agent = Agent(
role="Python Data Analyst",
goal="Analyze data and provide insights using Python",
backstory="You are an experienced data analyst with strong Python skills.",
allow_code_execution=True
)
task_1 = Task(
description="Analyze the first dataset and calculate the average age. Ages: {ages}",
agent=coding_agent,
expected_output="The average age of the participants."
)
task_2 = Task(
description="Analyze the second dataset and calculate the average age. Ages: {ages}",
agent=coding_agent,
expected_output="The average age of the participants."
)
crew_1 = Crew(agents=[coding_agent], tasks=[task_1])
crew_2 = Crew(agents=[coding_agent], tasks=[task_2])
async def main():
results = await asyncio.gather(
crew_1.akickoff(inputs={"ages": [25, 30, 35, 40, 45]}),
crew_2.akickoff(inputs={"ages": [20, 22, 24, 28, 30]})
)
for i, result in enumerate(results, 1):
print(f"Crew {i} Result:", result)
asyncio.run(main())
```
### Exemplo: Async Nativo para Múltiplas Entradas
Use `akickoff_for_each()` para executar sua crew contra múltiplas entradas concorrentemente com async nativo:
```python Code
import asyncio
from crewai import Crew, Agent, Task
coding_agent = Agent(
role="Python Data Analyst",
goal="Analyze data and provide insights using Python",
backstory="You are an experienced data analyst with strong Python skills.",
allow_code_execution=True
)
data_analysis_task = Task(
description="Analyze the dataset and calculate the average age. Ages: {ages}",
agent=coding_agent,
expected_output="The average age of the participants."
)
analysis_crew = Crew(
agents=[coding_agent],
tasks=[data_analysis_task]
)
async def main():
datasets = [
{"ages": [25, 30, 35, 40, 45]},
{"ages": [20, 22, 24, 28, 30]},
{"ages": [30, 35, 40, 45, 50]}
]
results = await analysis_crew.akickoff_for_each(datasets)
for i, result in enumerate(results, 1):
print(f"Dataset {i} Result:", result)
asyncio.run(main())
```
## Async Baseado em Thread com `kickoff_async()`
O método `kickoff_async()` fornece execução async envolvendo o `kickoff()` síncrono em uma thread. Isso é útil para integração async mais simples ou compatibilidade retroativa.
### Assinatura do Método
```python Code
async def kickoff_async(self, inputs: dict) -> CrewOutput:
```
### Parâmetros
- `inputs` (dict): Um dicionário contendo os dados de entrada necessários para as tarefas.
### Retorno
- `CrewOutput`: Um objeto que representa o resultado da execução da crew.
### Exemplo: Execução Async Baseada em Thread
```python Code
import asyncio
from crewai import Crew, Agent, Task
coding_agent = Agent(
role="Python Data Analyst",
goal="Analyze data and provide insights using Python",
backstory="You are an experienced data analyst with strong Python skills.",
allow_code_execution=True
)
data_analysis_task = Task(
description="Analyze the given dataset and calculate the average age of participants. Ages: {ages}",
agent=coding_agent,
expected_output="The average age of the participants."
)
analysis_crew = Crew(
agents=[coding_agent],
tasks=[data_analysis_task]
)
async def async_crew_execution():
result = await analysis_crew.kickoff_async(inputs={"ages": [25, 30, 35, 40, 45]})
print("Crew Result:", result)
asyncio.run(async_crew_execution())
```
### Exemplo: Múltiplas Crews Async Baseadas em Thread
```python Code
import asyncio
from crewai import Crew, Agent, Task
coding_agent = Agent(
role="Python Data Analyst",
goal="Analyze data and provide insights using Python",
backstory="You are an experienced data analyst with strong Python skills.",
allow_code_execution=True
)
task_1 = Task(
description="Analyze the first dataset and calculate the average age of participants. Ages: {ages}",
agent=coding_agent,
expected_output="The average age of the participants."
)
task_2 = Task(
description="Analyze the second dataset and calculate the average age of participants. Ages: {ages}",
agent=coding_agent,
expected_output="The average age of the participants."
)
crew_1 = Crew(agents=[coding_agent], tasks=[task_1])
crew_2 = Crew(agents=[coding_agent], tasks=[task_2])
async def async_multiple_crews():
result_1 = crew_1.kickoff_async(inputs={"ages": [25, 30, 35, 40, 45]})
result_2 = crew_2.kickoff_async(inputs={"ages": [20, 22, 24, 28, 30]})
results = await asyncio.gather(result_1, result_2)
for i, result in enumerate(results, 1):
print(f"Crew {i} Result:", result)
asyncio.run(async_multiple_crews())
```
## Streaming Assíncrono
Ambos os métodos async suportam streaming quando `stream=True` está definido na crew:
```python Code
import asyncio
from crewai import Crew, Agent, Task
agent = Agent(
role="Researcher",
goal="Research and summarize topics",
backstory="You are an expert researcher."
)
task = Task(
description="Research the topic: {topic}",
agent=agent,
expected_output="A comprehensive summary of the topic."
)
crew = Crew(
agents=[agent],
tasks=[task],
stream=True # Habilitar streaming
)
async def main():
streaming_output = await crew.akickoff(inputs={"topic": "AI trends in 2024"})
# Iteração async sobre chunks de streaming
async for chunk in streaming_output:
print(f"Chunk: {chunk.content}")
# Acessar resultado final após streaming completar
result = streaming_output.result
print(f"Final result: {result.raw}")
asyncio.run(main())
```
## Possíveis Casos de Uso
- **Geração Paralela de Conteúdo**: Inicie múltiplas crews independentes de forma assíncrona, cada uma responsável por gerar conteúdo sobre temas diferentes. Por exemplo, uma crew pode pesquisar e redigir um artigo sobre tendências em IA, enquanto outra gera posts para redes sociais sobre o lançamento de um novo produto.
- **Tarefas Conjuntas de Pesquisa de Mercado**: Lance múltiplas crews de forma assíncrona para realizar pesquisas de mercado em paralelo. Uma crew pode analisar tendências do setor, outra examinar estratégias de concorrentes e ainda outra avaliar o sentimento do consumidor.
- **Módulos Independentes de Planejamento de Viagem**: Execute crews separadas para planejar diferentes aspectos de uma viagem de forma independente. Uma crew pode cuidar das opções de voo, outra das acomodações e uma terceira do planejamento das atividades.
## Escolhendo entre `akickoff()` e `kickoff_async()`
| Recurso | `akickoff()` | `kickoff_async()` |
|---------|--------------|-------------------|
| Modelo de execução | Async/await nativo | Wrapper baseado em thread |
| Execução de tasks | Async com `aexecute_sync()` | Síncrono em thread pool |
| Operações de memória | Async | Síncrono em thread pool |
| Recuperação de conhecimento | Async | Síncrono em thread pool |
| Melhor para | Alta concorrência, cargas I/O-bound | Integração async simples |
| Suporte a streaming | Sim | Sim |