Files
crewAI/tests/tools/couchbase_tool_test.py
gautham c45e92bd17 Add Couchbase as a tool (#264)
* - Added CouchbaseFTSVectorStore as a CrewAI tool.
- Wrote a README to setup the tool.
- Wrote test cases.
- Added Couchbase as an optional dependency in the project.

* Fixed naming in some places. Added docstrings. Added instructions on how to create a vector search index.

* Fixed pyproject.toml

* error handling and response format

- Removed unnecessary ImportError for missing 'couchbase' package.
- Changed response format from a concatenated string to a JSON array for search results.
- Updated error handling to return error messages instead of raising exceptions in certain cases.
- Adjusted tests to reflect changes in response format and error handling.

* Update dependencies in pyproject.toml and uv.lock

- Changed pydantic version from 2.6.1 to 2.10.6 in both pyproject.toml and uv.lock.
- Updated crewai-tools version from 0.42.2 to 0.42.3 in uv.lock.
- Adjusted pydantic-core version from 2.33.1 to 2.27.2 in uv.lock, reflecting the new pydantic version.

* Removed restrictive pydantic version and updated uv.lock

* synced lockfile

* regenerated lockfile

* updated lockfile

* regenerated lockfile

* Update tool specifications for

* Fix test cases

---------

Co-authored-by: AayushTyagi1 <tyagiaayush5@gmail.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2025-07-08 10:54:54 -04:00

365 lines
16 KiB
Python

import pytest
from unittest.mock import MagicMock, patch, ANY
# Mock the couchbase library before importing the tool
# This prevents ImportErrors if couchbase isn't installed in the test environment
mock_couchbase = MagicMock()
mock_couchbase.search = MagicMock()
mock_couchbase.cluster = MagicMock()
mock_couchbase.options = MagicMock()
mock_couchbase.vector_search = MagicMock()
# Simulate the structure needed for checks
mock_couchbase.cluster.Cluster = MagicMock()
mock_couchbase.options.SearchOptions = MagicMock()
mock_couchbase.vector_search.VectorQuery = MagicMock()
mock_couchbase.vector_search.VectorSearch = MagicMock()
mock_couchbase.search.SearchRequest = MagicMock() # Mock the class itself
mock_couchbase.search.SearchRequest.create = MagicMock() # Mock the class method
# Add necessary exception types if needed for testing error handling
class MockCouchbaseException(Exception):
pass
mock_couchbase.exceptions = MagicMock()
mock_couchbase.exceptions.BucketNotFoundException = MockCouchbaseException
mock_couchbase.exceptions.ScopeNotFoundException = MockCouchbaseException
mock_couchbase.exceptions.CollectionNotFoundException = MockCouchbaseException
mock_couchbase.exceptions.IndexNotFoundException = MockCouchbaseException
import sys
sys.modules['couchbase'] = mock_couchbase
sys.modules['couchbase.search'] = mock_couchbase.search
sys.modules['couchbase.cluster'] = mock_couchbase.cluster
sys.modules['couchbase.options'] = mock_couchbase.options
sys.modules['couchbase.vector_search'] = mock_couchbase.vector_search
sys.modules['couchbase.exceptions'] = mock_couchbase.exceptions
# Now import the tool
from crewai_tools.tools.couchbase_tool.couchbase_tool import CouchbaseFTSVectorSearchTool
# --- Test Fixtures ---
@pytest.fixture(autouse=True)
def reset_global_mocks():
"""Reset call counts for globally defined mocks before each test."""
# Reset the specific mock causing the issue
mock_couchbase.vector_search.VectorQuery.reset_mock()
# It's good practice to also reset other related global mocks
# that might be called in your tests to prevent similar issues:
mock_couchbase.vector_search.VectorSearch.from_vector_query.reset_mock()
mock_couchbase.search.SearchRequest.create.reset_mock()
# Additional fixture to handle import pollution in full test suite
@pytest.fixture(autouse=True)
def ensure_couchbase_mocks():
"""Ensure that couchbase imports are properly mocked even when other tests have run first."""
# This fixture ensures our mocks are in place regardless of import order
original_modules = {}
# Store any existing modules
for module_name in ['couchbase', 'couchbase.search', 'couchbase.cluster', 'couchbase.options', 'couchbase.vector_search', 'couchbase.exceptions']:
if module_name in sys.modules:
original_modules[module_name] = sys.modules[module_name]
# Ensure our mocks are active
sys.modules['couchbase'] = mock_couchbase
sys.modules['couchbase.search'] = mock_couchbase.search
sys.modules['couchbase.cluster'] = mock_couchbase.cluster
sys.modules['couchbase.options'] = mock_couchbase.options
sys.modules['couchbase.vector_search'] = mock_couchbase.vector_search
sys.modules['couchbase.exceptions'] = mock_couchbase.exceptions
yield
# Restore original modules if they existed
for module_name, original_module in original_modules.items():
if original_module is not None:
sys.modules[module_name] = original_module
@pytest.fixture
def mock_cluster():
cluster = MagicMock()
bucket_manager = MagicMock()
search_index_manager = MagicMock()
bucket = MagicMock()
scope = MagicMock()
collection = MagicMock()
scope_search_index_manager = MagicMock()
# Setup mock return values for checks
cluster.buckets.return_value = bucket_manager
cluster.search_indexes.return_value = search_index_manager
cluster.bucket.return_value = bucket
bucket.scope.return_value = scope
scope.collection.return_value = collection
scope.search_indexes.return_value = scope_search_index_manager
# Mock bucket existence check
bucket_manager.get_bucket.return_value = True
# Mock scope/collection existence check
mock_scope_spec = MagicMock()
mock_scope_spec.name = "test_scope"
mock_collection_spec = MagicMock()
mock_collection_spec.name = "test_collection"
mock_scope_spec.collections = [mock_collection_spec]
bucket.collections.return_value.get_all_scopes.return_value = [mock_scope_spec]
# Mock index existence check
mock_index_def = MagicMock()
mock_index_def.name = "test_index"
scope_search_index_manager.get_all_indexes.return_value = [mock_index_def]
search_index_manager.get_all_indexes.return_value = [mock_index_def]
return cluster
@pytest.fixture
def mock_embedding_function():
# Simple mock embedding function
# return lambda query: [0.1] * 10 # Example embedding vector
return MagicMock(return_value=[0.1] * 10)
@pytest.fixture
def tool_config(mock_cluster, mock_embedding_function):
return {
"cluster": mock_cluster,
"bucket_name": "test_bucket",
"scope_name": "test_scope",
"collection_name": "test_collection",
"index_name": "test_index",
"embedding_function": mock_embedding_function,
"limit": 5,
"embedding_key": "test_embedding",
"scoped_index": True
}
@pytest.fixture
def couchbase_tool(tool_config):
# Patch COUCHBASE_AVAILABLE to True for these tests
with patch('crewai_tools.tools.couchbase_tool.couchbase_tool.COUCHBASE_AVAILABLE', True):
tool = CouchbaseFTSVectorSearchTool(**tool_config)
return tool
@pytest.fixture
def mock_search_iter():
mock_iter = MagicMock()
# Simulate search results with a 'fields' attribute
mock_row1 = MagicMock()
mock_row1.fields = {"id": "doc1", "text": "content 1", "test_embedding": [0.1]*10}
mock_row2 = MagicMock()
mock_row2.fields = {"id": "doc2", "text": "content 2", "test_embedding": [0.2]*10}
mock_iter.rows.return_value = [mock_row1, mock_row2]
return mock_iter
# --- Test Cases ---
def test_initialization_success(couchbase_tool, tool_config):
"""Test successful initialization with valid config."""
assert couchbase_tool.cluster == tool_config["cluster"]
assert couchbase_tool.bucket_name == "test_bucket"
assert couchbase_tool.scope_name == "test_scope"
assert couchbase_tool.collection_name == "test_collection"
assert couchbase_tool.index_name == "test_index"
assert couchbase_tool.embedding_function is not None
assert couchbase_tool.limit == 5
assert couchbase_tool.embedding_key == "test_embedding"
assert couchbase_tool.scoped_index == True
# Check if helper methods were called during init (via mocks in fixture)
couchbase_tool.cluster.buckets().get_bucket.assert_called_once_with("test_bucket")
couchbase_tool.cluster.bucket().collections().get_all_scopes.assert_called_once()
couchbase_tool.cluster.bucket().scope().search_indexes().get_all_indexes.assert_called_once()
def test_initialization_missing_required_args(mock_cluster, mock_embedding_function):
"""Test initialization fails when required arguments are missing."""
base_config = {
"cluster": mock_cluster, "bucket_name": "b", "scope_name": "s",
"collection_name": "c", "index_name": "i", "embedding_function": mock_embedding_function
}
required_keys = base_config.keys()
with patch('crewai_tools.tools.couchbase_tool.couchbase_tool.COUCHBASE_AVAILABLE', True):
for key in required_keys:
incomplete_config = base_config.copy()
del incomplete_config[key]
with pytest.raises(ValueError):
CouchbaseFTSVectorSearchTool(**incomplete_config)
def test_initialization_couchbase_unavailable():
"""Test behavior when couchbase library is not available."""
with patch('crewai_tools.tools.couchbase_tool.couchbase_tool.COUCHBASE_AVAILABLE', False):
with patch('click.confirm', return_value=False) as mock_confirm:
with pytest.raises(ImportError, match="The 'couchbase' package is required"):
CouchbaseFTSVectorSearchTool(cluster=MagicMock(), bucket_name="b", scope_name="s",
collection_name="c", index_name="i", embedding_function=MagicMock())
mock_confirm.assert_called_once() # Ensure user was prompted
def test_run_success_scoped_index(couchbase_tool, mock_search_iter, tool_config, mock_embedding_function):
"""Test successful _run execution with a scoped index."""
query = "find relevant documents"
# expected_embedding = mock_embedding_function(query)
# Mock the scope search method
couchbase_tool._scope.search = MagicMock(return_value=mock_search_iter)
# Mock the VectorQuery/VectorSearch/SearchRequest creation using runtime patching
with patch('crewai_tools.tools.couchbase_tool.couchbase_tool.VectorQuery') as mock_vq, \
patch('crewai_tools.tools.couchbase_tool.couchbase_tool.VectorSearch') as mock_vs, \
patch('crewai_tools.tools.couchbase_tool.couchbase_tool.search.SearchRequest') as mock_sr, \
patch('crewai_tools.tools.couchbase_tool.couchbase_tool.SearchOptions') as mock_so:
# Set up the mock objects and their return values
mock_vector_query = MagicMock()
mock_vector_search = MagicMock()
mock_search_req = MagicMock()
mock_search_options = MagicMock()
mock_vq.return_value = mock_vector_query
mock_vs.from_vector_query.return_value = mock_vector_search
mock_sr.create.return_value = mock_search_req
mock_so.return_value = mock_search_options
result = couchbase_tool._run(query=query)
# Check embedding function call
tool_config['embedding_function'].assert_called_once_with(query)
# Check VectorQuery call
mock_vq.assert_called_once_with(
tool_config['embedding_key'], mock_embedding_function.return_value, tool_config['limit']
)
# Check VectorSearch call
mock_vs.from_vector_query.assert_called_once_with(mock_vector_query)
# Check SearchRequest creation
mock_sr.create.assert_called_once_with(mock_vector_search)
# Check SearchOptions creation
mock_so.assert_called_once_with(limit=tool_config['limit'], fields=["*"])
# Check that scope search was called correctly
couchbase_tool._scope.search.assert_called_once_with(
tool_config['index_name'],
mock_search_req,
mock_search_options
)
# Check cluster search was NOT called
couchbase_tool.cluster.search.assert_not_called()
# Check result format (simple check for JSON structure)
assert '"id": "doc1"' in result
assert '"id": "doc2"' in result
assert result.startswith('[') # Should be valid JSON after concatenation
def test_run_success_global_index(tool_config, mock_search_iter, mock_embedding_function):
"""Test successful _run execution with a global (non-scoped) index."""
tool_config['scoped_index'] = False
with patch('crewai_tools.tools.couchbase_tool.couchbase_tool.COUCHBASE_AVAILABLE', True):
couchbase_tool = CouchbaseFTSVectorSearchTool(**tool_config)
query = "find global documents"
# expected_embedding = mock_embedding_function(query)
# Mock the cluster search method
couchbase_tool.cluster.search = MagicMock(return_value=mock_search_iter)
# Mock the VectorQuery/VectorSearch/SearchRequest creation using runtime patching
with patch('crewai_tools.tools.couchbase_tool.couchbase_tool.VectorQuery') as mock_vq, \
patch('crewai_tools.tools.couchbase_tool.couchbase_tool.VectorSearch') as mock_vs, \
patch('crewai_tools.tools.couchbase_tool.couchbase_tool.search.SearchRequest') as mock_sr, \
patch('crewai_tools.tools.couchbase_tool.couchbase_tool.SearchOptions') as mock_so:
# Set up the mock objects and their return values
mock_vector_query = MagicMock()
mock_vector_search = MagicMock()
mock_search_req = MagicMock()
mock_search_options = MagicMock()
mock_vq.return_value = mock_vector_query
mock_vs.from_vector_query.return_value = mock_vector_search
mock_sr.create.return_value = mock_search_req
mock_so.return_value = mock_search_options
result = couchbase_tool._run(query=query)
# Check embedding function call
tool_config['embedding_function'].assert_called_once_with(query)
# Check VectorQuery/Search call
mock_vq.assert_called_once_with(
tool_config['embedding_key'], mock_embedding_function.return_value, tool_config['limit']
)
mock_sr.create.assert_called_once_with(mock_vector_search)
# Check SearchOptions creation
mock_so.assert_called_once_with(limit=tool_config['limit'], fields=["*"])
# Check that cluster search was called correctly
couchbase_tool.cluster.search.assert_called_once_with(
tool_config['index_name'],
mock_search_req,
mock_search_options
)
# Check scope search was NOT called
couchbase_tool._scope.search.assert_not_called()
# Check result format
assert '"id": "doc1"' in result
assert '"id": "doc2"' in result
def test_check_bucket_exists_fail(tool_config):
"""Test check for bucket non-existence."""
mock_cluster = tool_config['cluster']
mock_cluster.buckets().get_bucket.side_effect = mock_couchbase.exceptions.BucketNotFoundException("Bucket not found")
with patch('crewai_tools.tools.couchbase_tool.couchbase_tool.COUCHBASE_AVAILABLE', True):
with pytest.raises(ValueError, match="Bucket test_bucket does not exist."):
CouchbaseFTSVectorSearchTool(**tool_config)
def test_check_scope_exists_fail(tool_config):
"""Test check for scope non-existence."""
mock_cluster = tool_config['cluster']
# Simulate scope not being in the list returned
mock_scope_spec = MagicMock()
mock_scope_spec.name = "wrong_scope"
mock_cluster.bucket().collections().get_all_scopes.return_value = [mock_scope_spec]
with patch('crewai_tools.tools.couchbase_tool.couchbase_tool.COUCHBASE_AVAILABLE', True):
with pytest.raises(ValueError, match="Scope test_scope not found"):
CouchbaseFTSVectorSearchTool(**tool_config)
def test_check_collection_exists_fail(tool_config):
"""Test check for collection non-existence."""
mock_cluster = tool_config['cluster']
# Simulate collection not being in the scope's list
mock_scope_spec = MagicMock()
mock_scope_spec.name = "test_scope"
mock_collection_spec = MagicMock()
mock_collection_spec.name = "wrong_collection"
mock_scope_spec.collections = [mock_collection_spec] # Only has wrong collection
mock_cluster.bucket().collections().get_all_scopes.return_value = [mock_scope_spec]
with patch('crewai_tools.tools.couchbase_tool.couchbase_tool.COUCHBASE_AVAILABLE', True):
with pytest.raises(ValueError, match="Collection test_collection not found"):
CouchbaseFTSVectorSearchTool(**tool_config)
def test_check_index_exists_fail_scoped(tool_config):
"""Test check for scoped index non-existence."""
mock_cluster = tool_config['cluster']
# Simulate index not being in the list returned by scope manager
mock_cluster.bucket().scope().search_indexes().get_all_indexes.return_value = []
with patch('crewai_tools.tools.couchbase_tool.couchbase_tool.COUCHBASE_AVAILABLE', True):
with pytest.raises(ValueError, match="Index test_index does not exist"):
CouchbaseFTSVectorSearchTool(**tool_config)
def test_check_index_exists_fail_global(tool_config):
"""Test check for global index non-existence."""
tool_config['scoped_index'] = False
mock_cluster = tool_config['cluster']
# Simulate index not being in the list returned by cluster manager
mock_cluster.search_indexes().get_all_indexes.return_value = []
with patch('crewai_tools.tools.couchbase_tool.couchbase_tool.COUCHBASE_AVAILABLE', True):
with pytest.raises(ValueError, match="Index test_index does not exist"):
CouchbaseFTSVectorSearchTool(**tool_config)