mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-09 08:08:32 +00:00
* feat: add `apps` & `actions` attributes to Agent (#3504)
* feat: add app attributes to Agent
* feat: add actions attribute to Agent
* chore: resolve linter issues
* refactor: merge the apps and actions parameters into a single one
* fix: remove unnecessary print
* feat: logging error when CrewaiPlatformTools fails
* chore: export CrewaiPlatformTools directly from crewai_tools
* style: resolver linter issues
* test: fix broken tests
* style: solve linter issues
* fix: fix broken test
* feat: monorepo restructure and test/ci updates
- Add crewai workspace member
- Fix vcr cassette paths and restore test dirs
- Resolve ci failures and update linter/pytest rules
* chore: update python version to 3.13 and package metadata
* feat: add crewai-tools workspace and fix tests/dependencies
* feat: add crewai-tools workspace structure
* Squashed 'temp-crewai-tools/' content from commit 9bae5633
git-subtree-dir: temp-crewai-tools
git-subtree-split: 9bae56339096cb70f03873e600192bd2cd207ac9
* feat: configure crewai-tools workspace package with dependencies
* fix: apply ruff auto-formatting to crewai-tools code
* chore: update lockfile
* fix: don't allow tool tests yet
* fix: comment out extra pytest flags for now
* fix: remove conflicting conftest.py from crewai-tools tests
* fix: resolve dependency conflicts and test issues
- Pin vcrpy to 7.0.0 to fix pytest-recording compatibility
- Comment out types-requests to resolve urllib3 conflict
- Update requests requirement in crewai-tools to >=2.32.0
* chore: update CI workflows and docs for monorepo structure
* chore: update CI workflows and docs for monorepo structure
* fix: actions syntax
* chore: ci publish and pin versions
* fix: add permission to action
* chore: bump version to 1.0.0a1 across all packages
- Updated version to 1.0.0a1 in pyproject.toml for crewai and crewai-tools
- Adjusted version in __init__.py files for consistency
* WIP: v1 docs (#3626)
(cherry picked from commit d46e20fa09bcd2f5916282f5553ddeb7183bd92c)
* docs: parity for all translations
* docs: full name of acronym AMP
* docs: fix lingering unused code
* docs: expand contextual options in docs.json
* docs: add contextual action to request feature on GitHub (#3635)
* chore: apply linting fixes to crewai-tools
* feat: add required env var validation for brightdata
Co-authored-by: Greyson Lalonde <greyson.r.lalonde@gmail.com>
* fix: handle properly anyOf oneOf allOf schema's props
Co-authored-by: Greyson Lalonde <greyson.r.lalonde@gmail.com>
* feat: bump version to 1.0.0a2
* Lorenze/native inference sdks (#3619)
* ruff linted
* using native sdks with litellm fallback
* drop exa
* drop print on completion
* Refactor LLM and utility functions for type consistency
- Updated `max_tokens` parameter in `LLM` class to accept `float` in addition to `int`.
- Modified `create_llm` function to ensure consistent type hints and return types, now returning `LLM | BaseLLM | None`.
- Adjusted type hints for various parameters in `create_llm` and `_llm_via_environment_or_fallback` functions for improved clarity and type safety.
- Enhanced test cases to reflect changes in type handling and ensure proper instantiation of LLM instances.
* fix agent_tests
* fix litellm tests and usagemetrics fix
* drop print
* Refactor LLM event handling and improve test coverage
- Removed commented-out event emission for LLM call failures in `llm.py`.
- Added `from_agent` parameter to `CrewAgentExecutor` for better context in LLM responses.
- Enhanced test for LLM call failure to simulate OpenAI API failure and updated assertions for clarity.
- Updated agent and task ID assertions in tests to ensure they are consistently treated as strings.
* fix test_converter
* fixed tests/agents/test_agent.py
* Refactor LLM context length exception handling and improve provider integration
- Renamed `LLMContextLengthExceededException` to `LLMContextLengthExceededExceptionError` for clarity and consistency.
- Updated LLM class to pass the provider parameter correctly during initialization.
- Enhanced error handling in various LLM provider implementations to raise the new exception type.
- Adjusted tests to reflect the updated exception name and ensure proper error handling in context length scenarios.
* Enhance LLM context window handling across providers
- Introduced CONTEXT_WINDOW_USAGE_RATIO to adjust context window sizes dynamically for Anthropic, Azure, Gemini, and OpenAI LLMs.
- Added validation for context window sizes in Azure and Gemini providers to ensure they fall within acceptable limits.
- Updated context window size calculations to use the new ratio, improving consistency and adaptability across different models.
- Removed hardcoded context window sizes in favor of ratio-based calculations for better flexibility.
* fix test agent again
* fix test agent
* feat: add native LLM providers for Anthropic, Azure, and Gemini
- Introduced new completion implementations for Anthropic, Azure, and Gemini, integrating their respective SDKs.
- Added utility functions for tool validation and extraction to support function calling across LLM providers.
- Enhanced context window management and token usage extraction for each provider.
- Created a common utility module for shared functionality among LLM providers.
* chore: update dependencies and improve context management
- Removed direct dependency on `litellm` from the main dependencies and added it under extras for better modularity.
- Updated the `litellm` dependency specification to allow for greater flexibility in versioning.
- Refactored context length exception handling across various LLM providers to use a consistent error class.
- Enhanced platform-specific dependency markers for NVIDIA packages to ensure compatibility across different systems.
* refactor(tests): update LLM instantiation to include is_litellm flag in test cases
- Modified multiple test cases in test_llm.py to set the is_litellm parameter to True when instantiating the LLM class.
- This change ensures that the tests are aligned with the latest LLM configuration requirements and improves consistency across test scenarios.
- Adjusted relevant assertions and comments to reflect the updated LLM behavior.
* linter
* linted
* revert constants
* fix(tests): correct type hint in expected model description
- Updated the expected description in the test_generate_model_description_dict_field function to use 'Dict' instead of 'dict' for consistency with type hinting conventions.
- This change ensures that the test accurately reflects the expected output format for model descriptions.
* refactor(llm): enhance LLM instantiation and error handling
- Updated the LLM class to include validation for the model parameter, ensuring it is a non-empty string.
- Improved error handling by logging warnings when the native SDK fails, allowing for a fallback to LiteLLM.
- Adjusted the instantiation of LLM in test cases to consistently include the is_litellm flag, aligning with recent changes in LLM configuration.
- Modified relevant tests to reflect these updates, ensuring better coverage and accuracy in testing scenarios.
* fixed test
* refactor(llm): enhance token usage tracking and add copy methods
- Updated the LLM class to track token usage and log callbacks in streaming mode, improving monitoring capabilities.
- Introduced shallow and deep copy methods for the LLM instance, allowing for better management of LLM configurations and parameters.
- Adjusted test cases to instantiate LLM with the is_litellm flag, ensuring alignment with recent changes in LLM configuration.
* refactor(tests): reorganize imports and enhance error messages in test cases
- Cleaned up import statements in test_crew.py for better organization and readability.
- Enhanced error messages in test cases to use `re.escape` for improved regex matching, ensuring more robust error handling.
- Adjusted comments for clarity and consistency across test scenarios.
- Ensured that all necessary modules are imported correctly to avoid potential runtime issues.
* feat: add base devtooling
* fix: ensure dep refs are updated for devtools
* fix: allow pre-release
* feat: allow release after tag
* feat: bump versions to 1.0.0a3
Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
* fix: match tag and release title, ignore devtools build for pypi
* fix: allow failed pypi publish
* feat: introduce trigger listing and execution commands for local development (#3643)
* chore: exclude tests from ruff linting
* chore: exclude tests from GitHub Actions linter
* fix: replace print statements with logger in agent and memory handling
* chore: add noqa for intentional print in printer utility
* fix: resolve linting errors across codebase
* feat: update docs with new approach to consume Platform Actions (#3675)
* fix: remove duplicate line and add explicit env var
* feat: bump versions to 1.0.0a4 (#3686)
* Update triggers docs (#3678)
* docs: introduce triggers list & triggers run command
* docs: add KO triggers docs
* docs: ensure CREWAI_PLATFORM_INTEGRATION_TOKEN is mentioned on docs (#3687)
* Lorenze/bedrock llm (#3693)
* feat: add AWS Bedrock support and update dependencies
- Introduced BedrockCompletion class for AWS Bedrock integration in LLM.
- Added boto3 as a new dependency in both pyproject.toml and uv.lock.
- Updated LLM class to support Bedrock provider.
- Created new files for Bedrock provider implementation.
* using converse api
* converse
* linted
* refactor: update BedrockCompletion class to improve parameter handling
- Changed max_tokens from a fixed integer to an optional integer.
- Simplified model ID assignment by removing the inference profile mapping method.
- Cleaned up comments and unnecessary code related to tool specifications and model-specific parameters.
* feat: improve event bus thread safety and async support
Add thread-safe, async-compatible event bus with read–write locking and
handler dependency ordering. Remove blinker dependency and implement
direct dispatch. Improve type safety, error handling, and deterministic
event synchronization.
Refactor tests to auto-wait for async handlers, ensure clean teardown,
and add comprehensive concurrency coverage. Replace thread-local state
in AgentEvaluator with instance-based locking for correct cross-thread
access. Enhance tracing reliability and event finalization.
* feat: enhance OpenAICompletion class with additional client parameters (#3701)
* feat: enhance OpenAICompletion class with additional client parameters
- Added support for default_headers, default_query, and client_params in the OpenAICompletion class.
- Refactored client initialization to use a dedicated method for client parameter retrieval.
- Introduced new test cases to validate the correct usage of OpenAICompletion with various parameters.
* fix: correct test case for unsupported OpenAI model
- Updated the test_openai.py to ensure that the LLM instance is created before calling the method, maintaining proper error handling for unsupported models.
- This change ensures that the test accurately checks for the NotFoundError when an invalid model is specified.
* fix: enhance error handling in OpenAICompletion class
- Added specific exception handling for NotFoundError and APIConnectionError in the OpenAICompletion class to provide clearer error messages and improve logging.
- Updated the test case for unsupported models to ensure it raises a ValueError with the appropriate message when a non-existent model is specified.
- This change improves the robustness of the OpenAI API integration and enhances the clarity of error reporting.
* fix: improve test for unsupported OpenAI model handling
- Refactored the test case in test_openai.py to create the LLM instance after mocking the OpenAI client, ensuring proper error handling for unsupported models.
- This change enhances the clarity of the test by accurately checking for ValueError when a non-existent model is specified, aligning with recent improvements in error handling for the OpenAICompletion class.
* feat: bump versions to 1.0.0b1 (#3706)
* Lorenze/tools drop litellm (#3710)
* completely drop litellm and correctly pass config for qdrant
* feat: add support for additional embedding models in EmbeddingService
- Expanded the list of supported embedding models to include Google Vertex, Hugging Face, Jina, Ollama, OpenAI, Roboflow, Watson X, custom embeddings, Sentence Transformers, Text2Vec, OpenClip, and Instructor.
- This enhancement improves the versatility of the EmbeddingService by allowing integration with a wider range of embedding providers.
* fix: update collection parameter handling in CrewAIRagAdapter
- Changed the condition for setting vectors_config in the CrewAIRagAdapter to check for QdrantConfig instance instead of using hasattr. This improves type safety and ensures proper configuration handling for Qdrant integration.
* moved stagehand as optional dep (#3712)
* feat: bump versions to 1.0.0b2 (#3713)
* feat: enhance AnthropicCompletion class with additional client parame… (#3707)
* feat: enhance AnthropicCompletion class with additional client parameters and tool handling
- Added support for client_params in the AnthropicCompletion class to allow for additional client configuration.
- Refactored client initialization to use a dedicated method for retrieving client parameters.
- Implemented a new method to handle tool use conversation flow, ensuring proper execution and response handling.
- Introduced comprehensive test cases to validate the functionality of the AnthropicCompletion class, including tool use scenarios and parameter handling.
* drop print statements
* test: add fixture to mock ANTHROPIC_API_KEY for tests
- Introduced a pytest fixture to automatically mock the ANTHROPIC_API_KEY environment variable for all tests in the test_anthropic.py module.
- This change ensures that tests can run without requiring a real API key, improving test isolation and reliability.
* refactor: streamline streaming message handling in AnthropicCompletion class
- Removed the 'stream' parameter from the API call as it is set internally by the SDK.
- Simplified the handling of tool use events and response construction by extracting token usage from the final message.
- Enhanced the flow for managing tool use conversation, ensuring proper integration with the streaming API response.
* fix streaming here too
* fix: improve error handling in tool conversion for AnthropicCompletion class
- Enhanced exception handling during tool conversion by catching KeyError and ValueError.
- Added logging for conversion errors to aid in debugging and maintain robustness in tool integration.
* feat: enhance GeminiCompletion class with client parameter support (#3717)
* feat: enhance GeminiCompletion class with client parameter support
- Added support for client_params in the GeminiCompletion class to allow for additional client configuration.
- Refactored client initialization into a dedicated method for improved parameter handling.
- Introduced a new method to retrieve client parameters, ensuring compatibility with the base class.
- Enhanced error handling during client initialization to provide clearer messages for missing configuration.
- Updated documentation to reflect the changes in client parameter usage.
* add optional dependancies
* refactor: update test fixture to mock GOOGLE_API_KEY
- Renamed the fixture from `mock_anthropic_api_key` to `mock_google_api_key` to reflect the change in the environment variable being mocked.
- This update ensures that all tests in the module can run with a mocked GOOGLE_API_KEY, improving test isolation and reliability.
* fix tests
* feat: enhance BedrockCompletion class with advanced features
* feat: enhance BedrockCompletion class with advanced features and error handling
- Added support for guardrail configuration, additional model request fields, and custom response field paths in the BedrockCompletion class.
- Improved error handling for AWS exceptions and added token usage tracking with stop reason logging.
- Enhanced streaming response handling with comprehensive event management, including tool use and content block processing.
- Updated documentation to reflect new features and initialization parameters.
- Introduced a new test suite for BedrockCompletion to validate functionality and ensure robust integration with AWS Bedrock APIs.
* chore: add boto typing
* fix: use typing_extensions.Required for Python 3.10 compatibility
---------
Co-authored-by: Greyson Lalonde <greyson.r.lalonde@gmail.com>
* feat: azure native tests
* feat: add Azure AI Inference support and related tests
- Introduced the `azure-ai-inference` package with version `1.0.0b9` and its dependencies in `uv.lock` and `pyproject.toml`.
- Added new test files for Azure LLM functionality, including tests for Azure completion and tool handling.
- Implemented comprehensive test cases to validate Azure-specific behavior and integration with the CrewAI framework.
- Enhanced the testing framework to mock Azure credentials and ensure proper isolation during tests.
* feat: enhance AzureCompletion class with Azure OpenAI support
- Added support for the Azure OpenAI endpoint in the AzureCompletion class, allowing for flexible endpoint configurations.
- Implemented endpoint validation and correction to ensure proper URL formats for Azure OpenAI deployments.
- Enhanced error handling to provide clearer messages for common HTTP errors, including authentication and rate limit issues.
- Updated tests to validate the new endpoint handling and error messaging, ensuring robust integration with Azure AI Inference.
- Refactored parameter preparation to conditionally include the model parameter based on the endpoint type.
* refactor: convert project module to metaclass with full typing
* Lorenze/OpenAI base url backwards support (#3723)
* fix: enhance OpenAICompletion class base URL handling
- Updated the base URL assignment in the OpenAICompletion class to prioritize the new `api_base` attribute and fallback to the environment variable `OPENAI_BASE_URL` if both are not set.
- Added `api_base` to the list of parameters in the OpenAICompletion class to ensure proper configuration and flexibility in API endpoint management.
* feat: enhance OpenAICompletion class with api_base support
- Added the `api_base` parameter to the OpenAICompletion class to allow for flexible API endpoint configuration.
- Updated the `_get_client_params` method to prioritize `base_url` over `api_base`, ensuring correct URL handling.
- Introduced comprehensive tests to validate the behavior of `api_base` and `base_url` in various scenarios, including environment variable fallback.
- Enhanced test coverage for client parameter retrieval, ensuring robust integration with the OpenAI API.
* fix: improve OpenAICompletion class configuration handling
- Added a debug print statement to log the client configuration parameters during initialization for better traceability.
- Updated the base URL assignment logic to ensure it defaults to None if no valid base URL is provided, enhancing robustness in API endpoint configuration.
- Refined the retrieval of the `api_base` environment variable to streamline the configuration process.
* drop print
* feat: improvements on import native sdk support (#3725)
* feat: add support for Anthropic provider and enhance logging
- Introduced the `anthropic` package with version `0.69.0` in `pyproject.toml` and `uv.lock`, allowing for integration with the Anthropic API.
- Updated logging in the LLM class to provide clearer error messages when importing native providers, enhancing debugging capabilities.
- Improved error handling in the AnthropicCompletion class to guide users on installation via the updated error message format.
- Refactored import error handling in other provider classes to maintain consistency in error messaging and installation instructions.
* feat: enhance LLM support with Bedrock provider and update dependencies
- Added support for the `bedrock` provider in the LLM class, allowing integration with AWS Bedrock APIs.
- Updated `uv.lock` to replace `boto3` with `bedrock` in the dependencies, reflecting the new provider structure.
- Introduced `SUPPORTED_NATIVE_PROVIDERS` to include `bedrock` and ensure proper error handling when instantiating native providers.
- Enhanced error handling in the LLM class to raise informative errors when native provider instantiation fails.
- Added tests to validate the behavior of the new Bedrock provider and ensure fallback mechanisms work correctly for unsupported providers.
* test: update native provider fallback tests to expect ImportError
* adjust the test with the expected bevaior - raising ImportError
* this is exoecting the litellm format, all gemini native tests are in test_google.py
---------
Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
* fix: remove stdout prints, improve test determinism, and update trace handling
Removed `print` statements from the `LLMStreamChunkEvent` handler to prevent
LLM response chunks from being written directly to stdout. The listener now
only tracks chunks internally.
Fixes #3715
Added explicit return statements for trace-related tests.
Updated cassette for `test_failed_evaluation` to reflect new behavior where
an empty trace dict is used instead of returning early.
Ensured deterministic cleanup order in test fixtures by making
`clear_event_bus_handlers` depend on `setup_test_environment`. This guarantees
event bus shutdown and file handle cleanup occur before temporary directory
deletion, resolving intermittent “Directory not empty” errors in CI.
* chore: remove lib/crewai exclusion from pre-commit hooks
* feat: enhance task guardrail functionality and validation
* feat: enhance task guardrail functionality and validation
- Introduced support for multiple guardrails in the Task class, allowing for sequential processing of guardrails.
- Added a new `guardrails` field to the Task model to accept a list of callable guardrails or string descriptions.
- Implemented validation to ensure guardrails are processed correctly, including handling of retries and error messages.
- Enhanced the `_invoke_guardrail_function` method to manage guardrail execution and integrate with existing task output processing.
- Updated tests to cover various scenarios involving multiple guardrails, including success, failure, and retry mechanisms.
This update improves the flexibility and robustness of task execution by allowing for more complex validation scenarios.
* refactor: enhance guardrail type handling in Task model
- Updated the Task class to improve guardrail type definitions, introducing GuardrailType and GuardrailsType for better clarity and type safety.
- Simplified the validation logic for guardrails, ensuring that both single and multiple guardrails are processed correctly.
- Enhanced error messages for guardrail validation to provide clearer feedback when incorrect types are provided.
- This refactor improves the maintainability and robustness of task execution by standardizing guardrail handling.
* feat: implement per-guardrail retry tracking in Task model
- Introduced a new private attribute `_guardrail_retry_counts` to the Task class for tracking retry attempts on a per-guardrail basis.
- Updated the guardrail processing logic to utilize the new retry tracking, allowing for independent retry counts for each guardrail.
- Enhanced error handling to provide clearer feedback when guardrails fail validation after exceeding retry limits.
- Modified existing tests to validate the new retry tracking behavior, ensuring accurate assertions on guardrail retries.
This update improves the robustness and flexibility of task execution by allowing for more granular control over guardrail validation and retry mechanisms.
* chore: 1.0.0b3 bump (#3734)
* chore: full ruff and mypy
improved linting, pre-commit setup, and internal architecture. Configured Ruff to respect .gitignore, added stricter rules, and introduced a lock pre-commit hook with virtualenv activation. Fixed type shadowing in EXASearchTool using a type_ alias to avoid PEP 563 conflicts and resolved circular imports in agent executor and guardrail modules. Removed agent-ops attributes, deprecated watson alias, and dropped crewai-enterprise tools with corresponding test updates. Refactored cache and memoization for thread safety and cleaned up structured output adapters and related logic.
* New MCL DSL (#3738)
* Adding MCP implementation
* New tests for MCP implementation
* fix tests
* update docs
* Revert "New tests for MCP implementation"
This reverts commit 0bbe6dee90.
* linter
* linter
* fix
* verify mcp pacakge exists
* adjust docs to be clear only remote servers are supported
* reverted
* ensure args schema generated properly
* properly close out
---------
Co-authored-by: lorenzejay <lorenzejaytech@gmail.com>
Co-authored-by: Greyson Lalonde <greyson.r.lalonde@gmail.com>
* feat: a2a experimental
experimental a2a support
---------
Co-authored-by: Lucas Gomide <lucaslg200@gmail.com>
Co-authored-by: Greyson LaLonde <greyson.r.lalonde@gmail.com>
Co-authored-by: Tony Kipkemboi <iamtonykipkemboi@gmail.com>
Co-authored-by: Mike Plachta <mplachta@users.noreply.github.com>
Co-authored-by: João Moura <joaomdmoura@gmail.com>
1089 lines
34 KiB
Python
1089 lines
34 KiB
Python
import os
|
|
import sys
|
|
import types
|
|
from unittest.mock import patch, MagicMock, Mock
|
|
import pytest
|
|
|
|
from crewai.llm import LLM
|
|
from crewai.crew import Crew
|
|
from crewai.agent import Agent
|
|
from crewai.task import Task
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def mock_azure_credentials():
|
|
"""Automatically mock Azure credentials for all tests in this module."""
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test.openai.azure.com"
|
|
}):
|
|
yield
|
|
|
|
|
|
def test_azure_completion_is_used_when_azure_provider():
|
|
"""
|
|
Test that AzureCompletion from completion.py is used when LLM uses provider 'azure'
|
|
"""
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
assert llm.__class__.__name__ == "AzureCompletion"
|
|
assert llm.provider == "azure"
|
|
assert llm.model == "gpt-4"
|
|
|
|
|
|
def test_azure_completion_is_used_when_azure_openai_provider():
|
|
"""
|
|
Test that AzureCompletion is used when provider is 'azure_openai'
|
|
"""
|
|
llm = LLM(model="azure_openai/gpt-4")
|
|
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
assert isinstance(llm, AzureCompletion)
|
|
assert llm.provider == "azure_openai"
|
|
assert llm.model == "gpt-4"
|
|
|
|
|
|
def test_azure_tool_use_conversation_flow():
|
|
"""
|
|
Test that the Azure completion properly handles tool use conversation flow
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
from azure.ai.inference.models import ChatCompletionsToolCall
|
|
|
|
# Create AzureCompletion instance
|
|
completion = AzureCompletion(
|
|
model="gpt-4",
|
|
api_key="test-key",
|
|
endpoint="https://test.openai.azure.com"
|
|
)
|
|
|
|
# Mock tool function
|
|
def mock_weather_tool(location: str) -> str:
|
|
return f"The weather in {location} is sunny and 75°F"
|
|
|
|
available_functions = {"get_weather": mock_weather_tool}
|
|
|
|
# Mock the Azure client responses
|
|
with patch.object(completion.client, 'complete') as mock_complete:
|
|
# Mock tool call in response with proper type
|
|
mock_tool_call = MagicMock(spec=ChatCompletionsToolCall)
|
|
mock_tool_call.function.name = "get_weather"
|
|
mock_tool_call.function.arguments = '{"location": "San Francisco"}'
|
|
|
|
mock_message = MagicMock()
|
|
mock_message.content = None
|
|
mock_message.tool_calls = [mock_tool_call]
|
|
|
|
mock_choice = MagicMock()
|
|
mock_choice.message = mock_message
|
|
|
|
mock_response = MagicMock()
|
|
mock_response.choices = [mock_choice]
|
|
mock_response.usage = MagicMock(
|
|
prompt_tokens=100,
|
|
completion_tokens=50,
|
|
total_tokens=150
|
|
)
|
|
|
|
mock_complete.return_value = mock_response
|
|
|
|
# Test the call
|
|
messages = [{"role": "user", "content": "What's the weather like in San Francisco?"}]
|
|
result = completion.call(
|
|
messages=messages,
|
|
available_functions=available_functions
|
|
)
|
|
|
|
# Verify the tool was executed and returned the result
|
|
assert result == "The weather in San Francisco is sunny and 75°F"
|
|
|
|
# Verify that the API was called
|
|
assert mock_complete.called
|
|
|
|
|
|
def test_azure_completion_module_is_imported():
|
|
"""
|
|
Test that the completion module is properly imported when using Azure provider
|
|
"""
|
|
module_name = "crewai.llms.providers.azure.completion"
|
|
|
|
# Remove module from cache if it exists
|
|
if module_name in sys.modules:
|
|
del sys.modules[module_name]
|
|
|
|
# Create LLM instance - this should trigger the import
|
|
LLM(model="azure/gpt-4")
|
|
|
|
# Verify the module was imported
|
|
assert module_name in sys.modules
|
|
completion_mod = sys.modules[module_name]
|
|
assert isinstance(completion_mod, types.ModuleType)
|
|
|
|
# Verify the class exists in the module
|
|
assert hasattr(completion_mod, 'AzureCompletion')
|
|
|
|
|
|
def test_native_azure_raises_error_when_initialization_fails():
|
|
"""
|
|
Test that LLM raises ImportError when native Azure completion fails to initialize.
|
|
This ensures we don't silently fall back when there's a configuration issue.
|
|
"""
|
|
# Mock the _get_native_provider to return a failing class
|
|
with patch('crewai.llm.LLM._get_native_provider') as mock_get_provider:
|
|
|
|
class FailingCompletion:
|
|
def __init__(self, *args, **kwargs):
|
|
raise Exception("Native Azure AI Inference SDK failed")
|
|
|
|
mock_get_provider.return_value = FailingCompletion
|
|
|
|
# This should raise ImportError, not fall back to LiteLLM
|
|
with pytest.raises(ImportError) as excinfo:
|
|
LLM(model="azure/gpt-4")
|
|
|
|
assert "Error importing native provider" in str(excinfo.value)
|
|
assert "Native Azure AI Inference SDK failed" in str(excinfo.value)
|
|
|
|
|
|
def test_azure_completion_initialization_parameters():
|
|
"""
|
|
Test that AzureCompletion is initialized with correct parameters
|
|
"""
|
|
llm = LLM(
|
|
model="azure/gpt-4",
|
|
temperature=0.7,
|
|
max_tokens=2000,
|
|
top_p=0.9,
|
|
frequency_penalty=0.5,
|
|
presence_penalty=0.3,
|
|
api_key="test-key",
|
|
endpoint="https://test.openai.azure.com"
|
|
)
|
|
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
assert isinstance(llm, AzureCompletion)
|
|
assert llm.model == "gpt-4"
|
|
assert llm.temperature == 0.7
|
|
assert llm.max_tokens == 2000
|
|
assert llm.top_p == 0.9
|
|
assert llm.frequency_penalty == 0.5
|
|
assert llm.presence_penalty == 0.3
|
|
|
|
|
|
def test_azure_specific_parameters():
|
|
"""
|
|
Test Azure-specific parameters like stop sequences, streaming, and API version
|
|
"""
|
|
llm = LLM(
|
|
model="azure/gpt-4",
|
|
stop=["Human:", "Assistant:"],
|
|
stream=True,
|
|
api_version="2024-02-01",
|
|
endpoint="https://test.openai.azure.com"
|
|
)
|
|
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
assert isinstance(llm, AzureCompletion)
|
|
assert llm.stop == ["Human:", "Assistant:"]
|
|
assert llm.stream == True
|
|
assert llm.api_version == "2024-02-01"
|
|
|
|
|
|
def test_azure_completion_call():
|
|
"""
|
|
Test that AzureCompletion call method works
|
|
"""
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
# Mock the call method on the instance
|
|
with patch.object(llm, 'call', return_value="Hello! I'm Azure OpenAI, ready to help.") as mock_call:
|
|
result = llm.call("Hello, how are you?")
|
|
|
|
assert result == "Hello! I'm Azure OpenAI, ready to help."
|
|
mock_call.assert_called_once_with("Hello, how are you?")
|
|
|
|
|
|
def test_azure_completion_called_during_crew_execution():
|
|
"""
|
|
Test that AzureCompletion.call is actually invoked when running a crew
|
|
"""
|
|
# Create the LLM instance first
|
|
azure_llm = LLM(model="azure/gpt-4")
|
|
|
|
# Mock the call method on the specific instance
|
|
with patch.object(azure_llm, 'call', return_value="Tokyo has 14 million people.") as mock_call:
|
|
|
|
# Create agent with explicit LLM configuration
|
|
agent = Agent(
|
|
role="Research Assistant",
|
|
goal="Find population info",
|
|
backstory="You research populations.",
|
|
llm=azure_llm,
|
|
)
|
|
|
|
task = Task(
|
|
description="Find Tokyo population",
|
|
expected_output="Population number",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(agents=[agent], tasks=[task])
|
|
result = crew.kickoff()
|
|
|
|
# Verify mock was called
|
|
assert mock_call.called
|
|
assert "14 million" in str(result)
|
|
|
|
|
|
def test_azure_completion_call_arguments():
|
|
"""
|
|
Test that AzureCompletion.call is invoked with correct arguments
|
|
"""
|
|
# Create LLM instance first
|
|
azure_llm = LLM(model="azure/gpt-4")
|
|
|
|
# Mock the instance method
|
|
with patch.object(azure_llm, 'call') as mock_call:
|
|
mock_call.return_value = "Task completed successfully."
|
|
|
|
agent = Agent(
|
|
role="Test Agent",
|
|
goal="Complete a simple task",
|
|
backstory="You are a test agent.",
|
|
llm=azure_llm # Use same instance
|
|
)
|
|
|
|
task = Task(
|
|
description="Say hello world",
|
|
expected_output="Hello world",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(agents=[agent], tasks=[task])
|
|
crew.kickoff()
|
|
|
|
# Verify call was made
|
|
assert mock_call.called
|
|
|
|
# Check the arguments passed to the call method
|
|
call_args = mock_call.call_args
|
|
assert call_args is not None
|
|
|
|
# The first argument should be the messages
|
|
messages = call_args[0][0] # First positional argument
|
|
assert isinstance(messages, (str, list))
|
|
|
|
# Verify that the task description appears in the messages
|
|
if isinstance(messages, str):
|
|
assert "hello world" in messages.lower()
|
|
elif isinstance(messages, list):
|
|
message_content = str(messages).lower()
|
|
assert "hello world" in message_content
|
|
|
|
|
|
def test_multiple_azure_calls_in_crew():
|
|
"""
|
|
Test that AzureCompletion.call is invoked multiple times for multiple tasks
|
|
"""
|
|
# Create LLM instance first
|
|
azure_llm = LLM(model="azure/gpt-4")
|
|
|
|
# Mock the instance method
|
|
with patch.object(azure_llm, 'call') as mock_call:
|
|
mock_call.return_value = "Task completed."
|
|
|
|
agent = Agent(
|
|
role="Multi-task Agent",
|
|
goal="Complete multiple tasks",
|
|
backstory="You can handle multiple tasks.",
|
|
llm=azure_llm # Use same instance
|
|
)
|
|
|
|
task1 = Task(
|
|
description="First task",
|
|
expected_output="First result",
|
|
agent=agent,
|
|
)
|
|
|
|
task2 = Task(
|
|
description="Second task",
|
|
expected_output="Second result",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(
|
|
agents=[agent],
|
|
tasks=[task1, task2]
|
|
)
|
|
crew.kickoff()
|
|
|
|
# Verify multiple calls were made
|
|
assert mock_call.call_count >= 2 # At least one call per task
|
|
|
|
# Verify each call had proper arguments
|
|
for call in mock_call.call_args_list:
|
|
assert len(call[0]) > 0 # Has positional arguments
|
|
messages = call[0][0]
|
|
assert messages is not None
|
|
|
|
|
|
def test_azure_completion_with_tools():
|
|
"""
|
|
Test that AzureCompletion.call is invoked with tools when agent has tools
|
|
"""
|
|
from crewai.tools import tool
|
|
|
|
@tool
|
|
def sample_tool(query: str) -> str:
|
|
"""A sample tool for testing"""
|
|
return f"Tool result for: {query}"
|
|
|
|
# Create LLM instance first
|
|
azure_llm = LLM(model="azure/gpt-4")
|
|
|
|
# Mock the instance method
|
|
with patch.object(azure_llm, 'call') as mock_call:
|
|
mock_call.return_value = "Task completed with tools."
|
|
|
|
agent = Agent(
|
|
role="Tool User",
|
|
goal="Use tools to complete tasks",
|
|
backstory="You can use tools.",
|
|
llm=azure_llm, # Use same instance
|
|
tools=[sample_tool]
|
|
)
|
|
|
|
task = Task(
|
|
description="Use the sample tool",
|
|
expected_output="Tool usage result",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(agents=[agent], tasks=[task])
|
|
crew.kickoff()
|
|
|
|
assert mock_call.called
|
|
|
|
call_args = mock_call.call_args
|
|
call_kwargs = call_args[1] if len(call_args) > 1 else {}
|
|
|
|
if 'tools' in call_kwargs:
|
|
assert call_kwargs['tools'] is not None
|
|
assert len(call_kwargs['tools']) > 0
|
|
|
|
|
|
def test_azure_raises_error_when_endpoint_missing():
|
|
"""Test that AzureCompletion raises ValueError when endpoint is missing"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
# Clear environment variables
|
|
with patch.dict(os.environ, {}, clear=True):
|
|
with pytest.raises(ValueError, match="Azure endpoint is required"):
|
|
AzureCompletion(model="gpt-4", api_key="test-key")
|
|
|
|
def test_azure_raises_error_when_api_key_missing():
|
|
"""Test that AzureCompletion raises ValueError when API key is missing"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
# Clear environment variables
|
|
with patch.dict(os.environ, {}, clear=True):
|
|
with pytest.raises(ValueError, match="Azure API key is required"):
|
|
AzureCompletion(model="gpt-4", endpoint="https://test.openai.azure.com")
|
|
def test_azure_endpoint_configuration():
|
|
"""
|
|
Test that Azure endpoint configuration works with multiple environment variable names
|
|
"""
|
|
# Test with AZURE_ENDPOINT
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test1.openai.azure.com"
|
|
}):
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
assert isinstance(llm, AzureCompletion)
|
|
assert llm.endpoint == "https://test1.openai.azure.com/openai/deployments/gpt-4"
|
|
|
|
# Test with AZURE_OPENAI_ENDPOINT
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_OPENAI_ENDPOINT": "https://test2.openai.azure.com"
|
|
}, clear=True):
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
assert isinstance(llm, AzureCompletion)
|
|
# Endpoint should be auto-constructed for Azure OpenAI
|
|
assert llm.endpoint == "https://test2.openai.azure.com/openai/deployments/gpt-4"
|
|
|
|
|
|
def test_azure_api_key_configuration():
|
|
"""
|
|
Test that API key configuration works from AZURE_API_KEY environment variable
|
|
"""
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-azure-key",
|
|
"AZURE_ENDPOINT": "https://test.openai.azure.com"
|
|
}):
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
assert isinstance(llm, AzureCompletion)
|
|
assert llm.api_key == "test-azure-key"
|
|
|
|
|
|
def test_azure_model_capabilities():
|
|
"""
|
|
Test that model capabilities are correctly identified
|
|
"""
|
|
# Test GPT-4 model (supports function calling)
|
|
llm_gpt4 = LLM(model="azure/gpt-4")
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
assert isinstance(llm_gpt4, AzureCompletion)
|
|
assert llm_gpt4.is_openai_model == True
|
|
assert llm_gpt4.supports_function_calling() == True
|
|
|
|
# Test GPT-3.5 model
|
|
llm_gpt35 = LLM(model="azure/gpt-35-turbo")
|
|
assert isinstance(llm_gpt35, AzureCompletion)
|
|
assert llm_gpt35.is_openai_model == True
|
|
assert llm_gpt35.supports_function_calling() == True
|
|
|
|
|
|
def test_azure_completion_params_preparation():
|
|
"""
|
|
Test that completion parameters are properly prepared
|
|
"""
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://models.inference.ai.azure.com"
|
|
}):
|
|
llm = LLM(
|
|
model="azure/gpt-4",
|
|
temperature=0.7,
|
|
top_p=0.9,
|
|
frequency_penalty=0.5,
|
|
presence_penalty=0.3,
|
|
max_tokens=1000
|
|
)
|
|
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
assert isinstance(llm, AzureCompletion)
|
|
|
|
messages = [{"role": "user", "content": "Hello"}]
|
|
params = llm._prepare_completion_params(messages)
|
|
|
|
assert params["model"] == "gpt-4"
|
|
assert params["temperature"] == 0.7
|
|
assert params["top_p"] == 0.9
|
|
assert params["frequency_penalty"] == 0.5
|
|
assert params["presence_penalty"] == 0.3
|
|
assert params["max_tokens"] == 1000
|
|
|
|
|
|
def test_azure_model_detection():
|
|
"""
|
|
Test that various Azure model formats are properly detected
|
|
"""
|
|
# Test Azure model naming patterns
|
|
azure_test_cases = [
|
|
"azure/gpt-4",
|
|
"azure_openai/gpt-4",
|
|
"azure/gpt-4o",
|
|
"azure/gpt-35-turbo"
|
|
]
|
|
|
|
for model_name in azure_test_cases:
|
|
llm = LLM(model=model_name)
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
assert isinstance(llm, AzureCompletion), f"Failed for model: {model_name}"
|
|
|
|
|
|
def test_azure_supports_stop_words():
|
|
"""
|
|
Test that Azure models support stop sequences
|
|
"""
|
|
llm = LLM(model="azure/gpt-4")
|
|
assert llm.supports_stop_words() == True
|
|
|
|
|
|
def test_azure_context_window_size():
|
|
"""
|
|
Test that Azure models return correct context window sizes
|
|
"""
|
|
# Test GPT-4
|
|
llm_gpt4 = LLM(model="azure/gpt-4")
|
|
context_size_gpt4 = llm_gpt4.get_context_window_size()
|
|
assert context_size_gpt4 > 0 # Should return valid context size
|
|
|
|
# Test GPT-4o
|
|
llm_gpt4o = LLM(model="azure/gpt-4o")
|
|
context_size_gpt4o = llm_gpt4o.get_context_window_size()
|
|
assert context_size_gpt4o > context_size_gpt4 # GPT-4o has larger context
|
|
|
|
|
|
def test_azure_message_formatting():
|
|
"""
|
|
Test that messages are properly formatted for Azure API
|
|
"""
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
# Test message formatting
|
|
test_messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{"role": "user", "content": "Hello"},
|
|
{"role": "assistant", "content": "Hi there!"},
|
|
{"role": "user", "content": "How are you?"}
|
|
]
|
|
|
|
formatted_messages = llm._format_messages_for_azure(test_messages)
|
|
|
|
# All messages should be formatted as dictionaries with content
|
|
assert len(formatted_messages) == 4
|
|
|
|
# Verify each message is a dict with content
|
|
for msg in formatted_messages:
|
|
assert isinstance(msg, dict)
|
|
assert "content" in msg
|
|
|
|
|
|
def test_azure_streaming_parameter():
|
|
"""
|
|
Test that streaming parameter is properly handled
|
|
"""
|
|
# Test non-streaming
|
|
llm_no_stream = LLM(model="azure/gpt-4", stream=False)
|
|
assert llm_no_stream.stream == False
|
|
|
|
# Test streaming
|
|
llm_stream = LLM(model="azure/gpt-4", stream=True)
|
|
assert llm_stream.stream == True
|
|
|
|
|
|
def test_azure_tool_conversion():
|
|
"""
|
|
Test that tools are properly converted to Azure OpenAI format
|
|
"""
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
# Mock tool in CrewAI format
|
|
crewai_tools = [{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "test_tool",
|
|
"description": "A test tool",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"query": {"type": "string", "description": "Search query"}
|
|
},
|
|
"required": ["query"]
|
|
}
|
|
}
|
|
}]
|
|
|
|
# Test tool conversion
|
|
azure_tools = llm._convert_tools_for_interference(crewai_tools)
|
|
|
|
assert len(azure_tools) == 1
|
|
# Azure tools should maintain the function calling format
|
|
assert azure_tools[0]["type"] == "function"
|
|
assert azure_tools[0]["function"]["name"] == "test_tool"
|
|
assert azure_tools[0]["function"]["description"] == "A test tool"
|
|
assert "parameters" in azure_tools[0]["function"]
|
|
|
|
|
|
def test_azure_environment_variable_endpoint():
|
|
"""
|
|
Test that Azure endpoint is properly loaded from environment
|
|
"""
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test.openai.azure.com"
|
|
}):
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
assert llm.client is not None
|
|
assert llm.endpoint == "https://test.openai.azure.com/openai/deployments/gpt-4"
|
|
|
|
|
|
def test_azure_token_usage_tracking():
|
|
"""
|
|
Test that token usage is properly tracked for Azure responses
|
|
"""
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
# Mock the Azure response with usage information
|
|
with patch.object(llm.client, 'complete') as mock_complete:
|
|
mock_message = MagicMock()
|
|
mock_message.content = "test response"
|
|
mock_message.tool_calls = None
|
|
|
|
mock_choice = MagicMock()
|
|
mock_choice.message = mock_message
|
|
|
|
mock_response = MagicMock()
|
|
mock_response.choices = [mock_choice]
|
|
mock_response.usage = MagicMock(
|
|
prompt_tokens=50,
|
|
completion_tokens=25,
|
|
total_tokens=75
|
|
)
|
|
mock_complete.return_value = mock_response
|
|
|
|
result = llm.call("Hello")
|
|
|
|
# Verify the response
|
|
assert result == "test response"
|
|
|
|
# Verify token usage was extracted
|
|
usage = llm._extract_azure_token_usage(mock_response)
|
|
assert usage["prompt_tokens"] == 50
|
|
assert usage["completion_tokens"] == 25
|
|
assert usage["total_tokens"] == 75
|
|
|
|
|
|
def test_azure_http_error_handling():
|
|
"""
|
|
Test that Azure HTTP errors are properly handled
|
|
"""
|
|
from azure.core.exceptions import HttpResponseError
|
|
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
# Mock an HTTP error
|
|
with patch.object(llm.client, 'complete') as mock_complete:
|
|
mock_complete.side_effect = HttpResponseError(message="Rate limit exceeded", response=MagicMock(status_code=429))
|
|
|
|
with pytest.raises(HttpResponseError):
|
|
llm.call("Hello")
|
|
|
|
|
|
def test_azure_streaming_completion():
|
|
"""
|
|
Test that streaming completions work properly
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
from azure.ai.inference.models import StreamingChatCompletionsUpdate
|
|
|
|
llm = LLM(model="azure/gpt-4", stream=True)
|
|
|
|
# Mock streaming response
|
|
with patch.object(llm.client, 'complete') as mock_complete:
|
|
# Create mock streaming updates with proper type
|
|
mock_updates = []
|
|
for chunk in ["Hello", " ", "world", "!"]:
|
|
mock_delta = MagicMock()
|
|
mock_delta.content = chunk
|
|
mock_delta.tool_calls = None
|
|
|
|
mock_choice = MagicMock()
|
|
mock_choice.delta = mock_delta
|
|
|
|
# Create mock update as StreamingChatCompletionsUpdate instance
|
|
mock_update = MagicMock(spec=StreamingChatCompletionsUpdate)
|
|
mock_update.choices = [mock_choice]
|
|
mock_updates.append(mock_update)
|
|
|
|
mock_complete.return_value = iter(mock_updates)
|
|
|
|
result = llm.call("Say hello")
|
|
|
|
# Verify the full response was assembled
|
|
assert result == "Hello world!"
|
|
|
|
|
|
def test_azure_api_version_default():
|
|
"""
|
|
Test that Azure API version defaults correctly
|
|
"""
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
assert isinstance(llm, AzureCompletion)
|
|
# Should use default or environment variable
|
|
assert llm.api_version is not None
|
|
|
|
|
|
def test_azure_function_calling_support():
|
|
"""
|
|
Test that function calling is supported for OpenAI models
|
|
"""
|
|
# Test with GPT-4 (supports function calling)
|
|
llm_gpt4 = LLM(model="azure/gpt-4")
|
|
assert llm_gpt4.supports_function_calling() == True
|
|
|
|
# Test with GPT-3.5 (supports function calling)
|
|
llm_gpt35 = LLM(model="azure/gpt-35-turbo")
|
|
assert llm_gpt35.supports_function_calling() == True
|
|
|
|
|
|
def test_azure_openai_endpoint_url_construction():
|
|
"""
|
|
Test that Azure OpenAI endpoint URLs are automatically constructed correctly
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test-resource.openai.azure.com"
|
|
}):
|
|
llm = LLM(model="azure/gpt-4o-mini")
|
|
|
|
assert "/openai/deployments/gpt-4o-mini" in llm.endpoint
|
|
assert llm.endpoint == "https://test-resource.openai.azure.com/openai/deployments/gpt-4o-mini"
|
|
assert llm.is_azure_openai_endpoint == True
|
|
|
|
|
|
def test_azure_openai_endpoint_url_with_trailing_slash():
|
|
"""
|
|
Test that trailing slashes are handled correctly in endpoint URLs
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test-resource.openai.azure.com/" # trailing slash
|
|
}):
|
|
llm = LLM(model="azure/gpt-4o")
|
|
|
|
assert llm.endpoint == "https://test-resource.openai.azure.com/openai/deployments/gpt-4o"
|
|
assert not llm.endpoint.endswith("//")
|
|
|
|
|
|
def test_azure_openai_endpoint_already_complete():
|
|
"""
|
|
Test that already complete Azure OpenAI endpoint URLs are not modified
|
|
"""
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test-resource.openai.azure.com/openai/deployments/my-deployment"
|
|
}):
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
assert llm.endpoint == "https://test-resource.openai.azure.com/openai/deployments/my-deployment"
|
|
assert llm.is_azure_openai_endpoint == True
|
|
|
|
|
|
def test_non_azure_openai_endpoint_unchanged():
|
|
"""
|
|
Test that non-Azure OpenAI endpoints are not modified
|
|
"""
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://models.inference.ai.azure.com"
|
|
}):
|
|
llm = LLM(model="azure/mistral-large")
|
|
|
|
assert llm.endpoint == "https://models.inference.ai.azure.com"
|
|
assert llm.is_azure_openai_endpoint == False
|
|
|
|
|
|
def test_azure_openai_model_parameter_excluded():
|
|
"""
|
|
Test that model parameter is NOT included for Azure OpenAI endpoints
|
|
"""
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test.openai.azure.com/openai/deployments/gpt-4"
|
|
}):
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
# Prepare params to check model parameter handling
|
|
params = llm._prepare_completion_params(
|
|
messages=[{"role": "user", "content": "test"}]
|
|
)
|
|
|
|
# Model parameter should NOT be included for Azure OpenAI endpoints
|
|
assert "model" not in params
|
|
assert "messages" in params
|
|
assert params["stream"] == False
|
|
|
|
|
|
def test_non_azure_openai_model_parameter_included():
|
|
"""
|
|
Test that model parameter IS included for non-Azure OpenAI endpoints
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://models.inference.ai.azure.com"
|
|
}):
|
|
llm = LLM(model="azure/mistral-large")
|
|
|
|
params = llm._prepare_completion_params(
|
|
messages=[{"role": "user", "content": "test"}]
|
|
)
|
|
|
|
assert "model" in params
|
|
assert params["model"] == "mistral-large"
|
|
|
|
|
|
def test_azure_message_formatting_with_role():
|
|
"""
|
|
Test that messages are formatted with both 'role' and 'content' fields
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
# Test with string message
|
|
formatted = llm._format_messages_for_azure("Hello world")
|
|
assert isinstance(formatted, list)
|
|
assert len(formatted) > 0
|
|
assert "role" in formatted[0]
|
|
assert "content" in formatted[0]
|
|
|
|
messages = [
|
|
{"role": "system", "content": "You are helpful"},
|
|
{"role": "user", "content": "Hello"},
|
|
{"role": "assistant", "content": "Hi there"}
|
|
]
|
|
formatted = llm._format_messages_for_azure(messages)
|
|
|
|
for msg in formatted:
|
|
assert "role" in msg
|
|
assert "content" in msg
|
|
assert msg["role"] in ["system", "user", "assistant"]
|
|
|
|
|
|
def test_azure_message_formatting_default_role():
|
|
"""
|
|
Test that messages without a role default to 'user'
|
|
"""
|
|
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
# Test with message that has role but tests default behavior
|
|
messages = [{"role": "user", "content": "test message"}]
|
|
formatted = llm._format_messages_for_azure(messages)
|
|
|
|
assert formatted[0]["role"] == "user"
|
|
assert formatted[0]["content"] == "test message"
|
|
|
|
|
|
def test_azure_endpoint_detection_flags():
|
|
"""
|
|
Test that is_azure_openai_endpoint flag is set correctly
|
|
"""
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test.openai.azure.com/openai/deployments/gpt-4"
|
|
}):
|
|
llm_openai = LLM(model="azure/gpt-4")
|
|
assert llm_openai.is_azure_openai_endpoint == True
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://models.inference.ai.azure.com"
|
|
}):
|
|
llm_other = LLM(model="azure/mistral-large")
|
|
assert llm_other.is_azure_openai_endpoint == False
|
|
|
|
|
|
def test_azure_improved_error_messages():
|
|
"""
|
|
Test that improved error messages are provided for common HTTP errors
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
from azure.core.exceptions import HttpResponseError
|
|
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
with patch.object(llm.client, 'complete') as mock_complete:
|
|
error_401 = HttpResponseError(message="Unauthorized")
|
|
error_401.status_code = 401
|
|
mock_complete.side_effect = error_401
|
|
|
|
with pytest.raises(HttpResponseError):
|
|
llm.call("test")
|
|
|
|
error_404 = HttpResponseError(message="Not Found")
|
|
error_404.status_code = 404
|
|
mock_complete.side_effect = error_404
|
|
|
|
with pytest.raises(HttpResponseError):
|
|
llm.call("test")
|
|
|
|
error_429 = HttpResponseError(message="Rate Limited")
|
|
error_429.status_code = 429
|
|
mock_complete.side_effect = error_429
|
|
|
|
with pytest.raises(HttpResponseError):
|
|
llm.call("test")
|
|
|
|
|
|
def test_azure_api_version_properly_passed():
|
|
"""
|
|
Test that api_version is properly passed to the client
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test.openai.azure.com",
|
|
"AZURE_API_VERSION": "" # Clear env var to test default
|
|
}, clear=False):
|
|
llm = LLM(model="azure/gpt-4", api_version="2024-08-01")
|
|
assert llm.api_version == "2024-08-01"
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test.openai.azure.com"
|
|
}, clear=True):
|
|
llm_default = LLM(model="azure/gpt-4")
|
|
assert llm_default.api_version == "2024-06-01" # Current default
|
|
|
|
|
|
def test_azure_timeout_and_max_retries_stored():
|
|
"""
|
|
Test that timeout and max_retries parameters are stored
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test.openai.azure.com"
|
|
}):
|
|
llm = LLM(
|
|
model="azure/gpt-4",
|
|
timeout=60.0,
|
|
max_retries=5
|
|
)
|
|
|
|
assert llm.timeout == 60.0
|
|
assert llm.max_retries == 5
|
|
|
|
|
|
def test_azure_complete_params_include_optional_params():
|
|
"""
|
|
Test that optional parameters are included in completion params when set
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://models.inference.ai.azure.com"
|
|
}):
|
|
llm = LLM(
|
|
model="azure/gpt-4",
|
|
temperature=0.7,
|
|
top_p=0.9,
|
|
frequency_penalty=0.5,
|
|
presence_penalty=0.3,
|
|
max_tokens=1000,
|
|
stop=["STOP", "END"]
|
|
)
|
|
|
|
params = llm._prepare_completion_params(
|
|
messages=[{"role": "user", "content": "test"}]
|
|
)
|
|
|
|
assert params["temperature"] == 0.7
|
|
assert params["top_p"] == 0.9
|
|
assert params["frequency_penalty"] == 0.5
|
|
assert params["presence_penalty"] == 0.3
|
|
assert params["max_tokens"] == 1000
|
|
assert params["stop"] == ["STOP", "END"]
|
|
|
|
|
|
def test_azure_endpoint_validation_with_azure_prefix():
|
|
"""
|
|
Test that 'azure/' prefix is properly stripped when constructing endpoint
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://test.openai.azure.com"
|
|
}):
|
|
llm = LLM(model="azure/gpt-4o-mini")
|
|
|
|
# Should strip 'azure/' prefix and use 'gpt-4o-mini' as deployment name
|
|
assert "gpt-4o-mini" in llm.endpoint
|
|
assert "azure/gpt-4o-mini" not in llm.endpoint
|
|
|
|
|
|
def test_azure_message_formatting_preserves_all_roles():
|
|
"""
|
|
Test that all message roles (system, user, assistant) are preserved correctly
|
|
"""
|
|
from crewai.llms.providers.azure.completion import AzureCompletion
|
|
|
|
llm = LLM(model="azure/gpt-4")
|
|
|
|
messages = [
|
|
{"role": "system", "content": "System message"},
|
|
{"role": "user", "content": "User message"},
|
|
{"role": "assistant", "content": "Assistant message"},
|
|
{"role": "user", "content": "Another user message"}
|
|
]
|
|
|
|
formatted = llm._format_messages_for_azure(messages)
|
|
|
|
assert formatted[0]["role"] == "system"
|
|
assert formatted[0]["content"] == "System message"
|
|
assert formatted[1]["role"] == "user"
|
|
assert formatted[1]["content"] == "User message"
|
|
assert formatted[2]["role"] == "assistant"
|
|
assert formatted[2]["content"] == "Assistant message"
|
|
assert formatted[3]["role"] == "user"
|
|
assert formatted[3]["content"] == "Another user message"
|
|
|
|
|
|
def test_azure_deepseek_model_support():
|
|
"""
|
|
Test that DeepSeek and other non-OpenAI models work correctly with Azure AI Inference
|
|
"""
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://models.inference.ai.azure.com"
|
|
}):
|
|
# Test DeepSeek model
|
|
llm_deepseek = LLM(model="azure/deepseek-chat")
|
|
|
|
# Endpoint should not be modified for non-OpenAI endpoints
|
|
assert llm_deepseek.endpoint == "https://models.inference.ai.azure.com"
|
|
assert llm_deepseek.is_azure_openai_endpoint == False
|
|
|
|
# Model parameter should be included in completion params
|
|
params = llm_deepseek._prepare_completion_params(
|
|
messages=[{"role": "user", "content": "test"}]
|
|
)
|
|
assert "model" in params
|
|
assert params["model"] == "deepseek-chat"
|
|
|
|
# Should not be detected as OpenAI model (no function calling)
|
|
assert llm_deepseek.is_openai_model == False
|
|
assert llm_deepseek.supports_function_calling() == False
|
|
|
|
|
|
def test_azure_mistral_and_other_models():
|
|
"""
|
|
Test that various non-OpenAI models (Mistral, Llama, etc.) work with Azure AI Inference
|
|
"""
|
|
test_models = [
|
|
"mistral-large-latest",
|
|
"llama-3-70b-instruct",
|
|
"cohere-command-r-plus"
|
|
]
|
|
|
|
for model_name in test_models:
|
|
with patch.dict(os.environ, {
|
|
"AZURE_API_KEY": "test-key",
|
|
"AZURE_ENDPOINT": "https://models.inference.ai.azure.com"
|
|
}):
|
|
llm = LLM(model=f"azure/{model_name}")
|
|
|
|
# Verify endpoint is not modified
|
|
assert llm.endpoint == "https://models.inference.ai.azure.com"
|
|
assert llm.is_azure_openai_endpoint == False
|
|
|
|
# Verify model parameter is included
|
|
params = llm._prepare_completion_params(
|
|
messages=[{"role": "user", "content": "test"}]
|
|
)
|
|
assert "model" in params
|
|
assert params["model"] == model_name
|