Files
crewAI/tests/knowledge/test_knowledge_storage_integration.py
Greyson LaLonde f28e78c5ba
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Update Test Durations / update-durations (3.10) (push) Has been cancelled
Update Test Durations / update-durations (3.11) (push) Has been cancelled
Update Test Durations / update-durations (3.12) (push) Has been cancelled
Update Test Durations / update-durations (3.13) (push) Has been cancelled
Build uv cache / build-cache (3.10) (push) Has been cancelled
Build uv cache / build-cache (3.11) (push) Has been cancelled
Build uv cache / build-cache (3.12) (push) Has been cancelled
Build uv cache / build-cache (3.13) (push) Has been cancelled
refactor: unify rag storage with instance-specific client support (#3455)
- ignore line length errors globally
- migrate knowledge/memory and crew query_knowledge to `SearchResult`
- remove legacy chromadb utils; fix empty metadata handling
- restore openai as default embedding provider; support instance-specific clients
- update and fix tests for `SearchResult` migration and rag changes
2025-09-17 14:46:54 -04:00

197 lines
6.9 KiB
Python

"""Integration tests for KnowledgeStorage RAG client migration."""
from unittest.mock import MagicMock, patch
import pytest
from crewai.knowledge.storage.knowledge_storage import ( # type: ignore[import-untyped]
KnowledgeStorage,
)
@patch("crewai.knowledge.storage.knowledge_storage.get_rag_client")
@patch("crewai.knowledge.storage.knowledge_storage.create_client")
@patch("crewai.knowledge.storage.knowledge_storage.get_embedding_function")
def test_knowledge_storage_uses_rag_client(
mock_get_embedding: MagicMock,
mock_create_client: MagicMock,
mock_get_client: MagicMock,
) -> None:
"""Test that KnowledgeStorage properly integrates with RAG client."""
mock_client = MagicMock()
mock_create_client.return_value = mock_client
mock_get_client.return_value = mock_client
mock_client.search.return_value = [
{"content": "test content", "score": 0.9, "metadata": {"source": "test"}}
]
embedder_config = {"provider": "openai", "model": "text-embedding-3-small"}
storage = KnowledgeStorage(
embedder=embedder_config, collection_name="test_knowledge"
)
mock_create_client.assert_called_once()
results = storage.search(["test query"], limit=5, score_threshold=0.3)
mock_get_client.assert_not_called()
mock_client.search.assert_called_once_with(
collection_name="knowledge_test_knowledge",
query="test query",
limit=5,
metadata_filter=None,
score_threshold=0.3,
)
assert isinstance(results, list)
assert len(results) == 1
assert isinstance(results[0], dict)
assert "content" in results[0]
@patch("crewai.knowledge.storage.knowledge_storage.get_rag_client")
def test_collection_name_prefixing(mock_get_client: MagicMock) -> None:
"""Test that collection names are properly prefixed."""
mock_client = MagicMock()
mock_get_client.return_value = mock_client
mock_client.search.return_value = []
storage = KnowledgeStorage(collection_name="custom_knowledge")
storage.search(["test"], limit=1)
mock_client.search.assert_called_once()
call_kwargs = mock_client.search.call_args.kwargs
assert call_kwargs["collection_name"] == "knowledge_custom_knowledge"
mock_client.reset_mock()
storage_default = KnowledgeStorage()
storage_default.search(["test"], limit=1)
call_kwargs = mock_client.search.call_args.kwargs
assert call_kwargs["collection_name"] == "knowledge"
@patch("crewai.knowledge.storage.knowledge_storage.get_rag_client")
def test_save_documents_integration(mock_get_client: MagicMock) -> None:
"""Test document saving through RAG client."""
mock_client = MagicMock()
mock_get_client.return_value = mock_client
storage = KnowledgeStorage(collection_name="test_docs")
documents = ["Document 1 content", "Document 2 content"]
storage.save(documents)
mock_client.get_or_create_collection.assert_called_once_with(
collection_name="knowledge_test_docs"
)
mock_client.add_documents.assert_called_once()
call_kwargs = mock_client.add_documents.call_args.kwargs
added_docs = call_kwargs["documents"]
assert len(added_docs) == 2
assert added_docs[0]["content"] == "Document 1 content"
assert added_docs[1]["content"] == "Document 2 content"
@patch("crewai.knowledge.storage.knowledge_storage.get_rag_client")
def test_reset_integration(mock_get_client: MagicMock) -> None:
"""Test collection reset through RAG client."""
mock_client = MagicMock()
mock_get_client.return_value = mock_client
storage = KnowledgeStorage(collection_name="test_reset")
storage.reset()
mock_client.delete_collection.assert_called_once_with(
collection_name="knowledge_test_reset"
)
@patch("crewai.knowledge.storage.knowledge_storage.get_rag_client")
def test_search_error_handling(mock_get_client: MagicMock) -> None:
"""Test error handling during search operations."""
mock_client = MagicMock()
mock_get_client.return_value = mock_client
mock_client.search.side_effect = Exception("RAG client error")
storage = KnowledgeStorage(collection_name="error_test")
results = storage.search(["test query"])
assert results == []
@patch("crewai.knowledge.storage.knowledge_storage.get_rag_client")
@patch("crewai.knowledge.storage.knowledge_storage.get_embedding_function")
def test_embedding_configuration_flow(
mock_get_embedding: MagicMock, mock_get_client: MagicMock
) -> None:
"""Test that embedding configuration flows properly to RAG client."""
mock_embedding_func = MagicMock()
mock_get_embedding.return_value = mock_embedding_func
mock_get_client.return_value = MagicMock()
embedder_config = {
"provider": "sentence-transformer",
"model_name": "all-MiniLM-L6-v2",
}
KnowledgeStorage(embedder=embedder_config, collection_name="embedding_test")
mock_get_embedding.assert_called_once_with(embedder_config)
@patch("crewai.knowledge.storage.knowledge_storage.get_rag_client")
def test_query_list_conversion(mock_get_client: MagicMock) -> None:
"""Test that query list is properly converted to string."""
mock_client = MagicMock()
mock_get_client.return_value = mock_client
mock_client.search.return_value = []
storage = KnowledgeStorage()
storage.search(["single query"])
call_kwargs = mock_client.search.call_args.kwargs
assert call_kwargs["query"] == "single query"
mock_client.reset_mock()
storage.search(["query one", "query two"])
call_kwargs = mock_client.search.call_args.kwargs
assert call_kwargs["query"] == "query one query two"
@patch("crewai.knowledge.storage.knowledge_storage.get_rag_client")
def test_metadata_filter_handling(mock_get_client: MagicMock) -> None:
"""Test metadata filter parameter handling."""
mock_client = MagicMock()
mock_get_client.return_value = mock_client
mock_client.search.return_value = []
storage = KnowledgeStorage()
metadata_filter = {"category": "technical", "priority": "high"}
storage.search(["test"], metadata_filter=metadata_filter)
call_kwargs = mock_client.search.call_args.kwargs
assert call_kwargs["metadata_filter"] == metadata_filter
mock_client.reset_mock()
storage.search(["test"], metadata_filter=None)
call_kwargs = mock_client.search.call_args.kwargs
assert call_kwargs["metadata_filter"] is None
@patch("crewai.knowledge.storage.knowledge_storage.get_rag_client")
def test_dimension_mismatch_error_handling(mock_get_client: MagicMock) -> None:
"""Test specific handling of dimension mismatch errors."""
mock_client = MagicMock()
mock_get_client.return_value = mock_client
mock_client.get_or_create_collection.return_value = None
mock_client.add_documents.side_effect = Exception("dimension mismatch detected")
storage = KnowledgeStorage(collection_name="dimension_test")
with pytest.raises(ValueError, match="Embedding dimension mismatch"):
storage.save(["test document"])