mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-09 08:08:32 +00:00
- Make task parameter required in CrewAgentExecutor.__init__ - Update Agent.create_agent_executor to require task parameter - Handle cases where crew can be None (standalone agent usage) - Update base class signatures to match - Remove unnecessary create_agent_executor calls during setup - Add missing type annotations in base_agent_executor_mixin - Fix all type errors in base_agent.py using Self return type - Add assert for agent_executor before use - Fix crew access checks to handle None case
228 lines
7.6 KiB
Python
228 lines
7.6 KiB
Python
from typing import Any, Optional
|
|
|
|
from pydantic import Field, PrivateAttr
|
|
|
|
from crewai.agents.agent_adapters.base_agent_adapter import BaseAgentAdapter
|
|
from crewai.agents.agent_adapters.langgraph.langgraph_tool_adapter import (
|
|
LangGraphToolAdapter,
|
|
)
|
|
from crewai.agents.agent_adapters.langgraph.structured_output_converter import (
|
|
LangGraphConverterAdapter,
|
|
)
|
|
from crewai.agents.agent_builder.base_agent import BaseAgent
|
|
from crewai.events.event_bus import crewai_event_bus
|
|
from crewai.events.types.agent_events import (
|
|
AgentExecutionCompletedEvent,
|
|
AgentExecutionErrorEvent,
|
|
AgentExecutionStartedEvent,
|
|
)
|
|
from crewai.tools.agent_tools.agent_tools import AgentTools
|
|
from crewai.tools.base_tool import BaseTool
|
|
from crewai.utilities import Logger
|
|
from crewai.utilities.converter import Converter
|
|
|
|
try:
|
|
from langgraph.checkpoint.memory import MemorySaver
|
|
from langgraph.prebuilt import create_react_agent
|
|
|
|
LANGGRAPH_AVAILABLE = True
|
|
except ImportError:
|
|
LANGGRAPH_AVAILABLE = False
|
|
|
|
|
|
class LangGraphAgentAdapter(BaseAgentAdapter):
|
|
"""Adapter for LangGraph agents to work with CrewAI."""
|
|
|
|
model_config = {"arbitrary_types_allowed": True}
|
|
|
|
_logger: Logger = PrivateAttr(default_factory=lambda: Logger())
|
|
_tool_adapter: LangGraphToolAdapter = PrivateAttr()
|
|
_graph: Any = PrivateAttr(default=None)
|
|
_memory: Any = PrivateAttr(default=None)
|
|
_max_iterations: int = PrivateAttr(default=10)
|
|
function_calling_llm: Any = Field(default=None)
|
|
step_callback: Any = Field(default=None)
|
|
|
|
model: str = Field(default="gpt-4o")
|
|
verbose: bool = Field(default=False)
|
|
|
|
def __init__(
|
|
self,
|
|
role: str,
|
|
goal: str,
|
|
backstory: str,
|
|
tools: Optional[list[BaseTool]] = None,
|
|
llm: Any = None,
|
|
max_iterations: int = 10,
|
|
agent_config: Optional[dict[str, Any]] = None,
|
|
**kwargs,
|
|
):
|
|
"""Initialize the LangGraph agent adapter."""
|
|
if not LANGGRAPH_AVAILABLE:
|
|
raise ImportError(
|
|
"LangGraph Agent Dependencies are not installed. Please install it using `uv add langchain-core langgraph`"
|
|
)
|
|
super().__init__(
|
|
role=role,
|
|
goal=goal,
|
|
backstory=backstory,
|
|
tools=tools,
|
|
llm=llm or self.model,
|
|
agent_config=agent_config,
|
|
**kwargs,
|
|
)
|
|
self._tool_adapter = LangGraphToolAdapter(tools=tools)
|
|
self._converter_adapter = LangGraphConverterAdapter(self)
|
|
self._max_iterations = max_iterations
|
|
self._setup_graph()
|
|
|
|
def _setup_graph(self) -> None:
|
|
"""Set up the LangGraph workflow graph."""
|
|
try:
|
|
self._memory = MemorySaver()
|
|
|
|
converted_tools: list[Any] = self._tool_adapter.tools()
|
|
if self._agent_config:
|
|
self._graph = create_react_agent(
|
|
model=self.llm,
|
|
tools=converted_tools,
|
|
checkpointer=self._memory,
|
|
debug=self.verbose,
|
|
**self._agent_config,
|
|
)
|
|
else:
|
|
self._graph = create_react_agent(
|
|
model=self.llm,
|
|
tools=converted_tools or [],
|
|
checkpointer=self._memory,
|
|
debug=self.verbose,
|
|
)
|
|
|
|
except ImportError as e:
|
|
self._logger.log(
|
|
"error", f"Failed to import LangGraph dependencies: {str(e)}"
|
|
)
|
|
raise
|
|
except Exception as e:
|
|
self._logger.log("error", f"Error setting up LangGraph agent: {str(e)}")
|
|
raise
|
|
|
|
def _build_system_prompt(self) -> str:
|
|
"""Build a system prompt for the LangGraph agent."""
|
|
base_prompt = f"""
|
|
You are {self.role}.
|
|
|
|
Your goal is: {self.goal}
|
|
|
|
Your backstory: {self.backstory}
|
|
|
|
When working on tasks, think step-by-step and use the available tools when necessary.
|
|
"""
|
|
return self._converter_adapter.enhance_system_prompt(base_prompt)
|
|
|
|
def execute_task(
|
|
self,
|
|
task: Any,
|
|
context: Optional[str] = None,
|
|
tools: Optional[list[BaseTool]] = None,
|
|
) -> str:
|
|
"""Execute a task using the LangGraph workflow."""
|
|
self.create_agent_executor(task, tools)
|
|
|
|
self.configure_structured_output(task)
|
|
|
|
try:
|
|
task_prompt = task.prompt() if hasattr(task, "prompt") else str(task)
|
|
|
|
if context:
|
|
task_prompt = self.i18n.slice("task_with_context").format(
|
|
task=task_prompt, context=context
|
|
)
|
|
|
|
crewai_event_bus.emit(
|
|
self,
|
|
event=AgentExecutionStartedEvent(
|
|
agent=self,
|
|
tools=self.tools,
|
|
task_prompt=task_prompt,
|
|
task=task,
|
|
),
|
|
)
|
|
|
|
session_id = f"task_{id(task)}"
|
|
|
|
config = {"configurable": {"thread_id": session_id}}
|
|
|
|
result = self._graph.invoke(
|
|
{
|
|
"messages": [
|
|
("system", self._build_system_prompt()),
|
|
("user", task_prompt),
|
|
]
|
|
},
|
|
config,
|
|
)
|
|
|
|
messages = result.get("messages", [])
|
|
last_message = messages[-1] if messages else None
|
|
|
|
final_answer = ""
|
|
if isinstance(last_message, dict):
|
|
final_answer = last_message.get("content", "")
|
|
elif hasattr(last_message, "content"):
|
|
final_answer = getattr(last_message, "content", "")
|
|
|
|
final_answer = (
|
|
self._converter_adapter.post_process_result(final_answer)
|
|
or "Task execution completed but no clear answer was provided."
|
|
)
|
|
crewai_event_bus.emit(
|
|
self,
|
|
event=AgentExecutionCompletedEvent(
|
|
agent=self, task=task, output=final_answer
|
|
),
|
|
)
|
|
|
|
return final_answer
|
|
|
|
except Exception as e:
|
|
self._logger.log("error", f"Error executing LangGraph task: {str(e)}")
|
|
crewai_event_bus.emit(
|
|
self,
|
|
event=AgentExecutionErrorEvent(
|
|
agent=self,
|
|
task=task,
|
|
error=str(e),
|
|
),
|
|
)
|
|
raise
|
|
|
|
def create_agent_executor(
|
|
self, task=None, tools: Optional[list[BaseTool]] = None
|
|
) -> None:
|
|
"""Configure the LangGraph agent for execution."""
|
|
self.configure_tools(tools)
|
|
|
|
def configure_tools(self, tools: Optional[list[BaseTool]] = None) -> None:
|
|
"""Configure tools for the LangGraph agent."""
|
|
if tools:
|
|
all_tools = list(self.tools or []) + list(tools or [])
|
|
self._tool_adapter.configure_tools(all_tools)
|
|
available_tools = self._tool_adapter.tools()
|
|
self._graph.tools = available_tools
|
|
|
|
def get_delegation_tools(self, agents: list[BaseAgent]) -> list[BaseTool]:
|
|
"""Implement delegation tools support for LangGraph."""
|
|
agent_tools = AgentTools(agents=agents)
|
|
return agent_tools.tools()
|
|
|
|
def get_output_converter(
|
|
self, llm: Any, text: str, model: Any, instructions: str
|
|
) -> Any:
|
|
"""Convert output format if needed."""
|
|
return Converter(llm=llm, text=text, model=model, instructions=instructions)
|
|
|
|
def configure_structured_output(self, task) -> None:
|
|
"""Configure the structured output for LangGraph."""
|
|
self._converter_adapter.configure_structured_output(task)
|