mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-10 16:48:30 +00:00
131 lines
5.5 KiB
Python
131 lines
5.5 KiB
Python
from typing import Dict, Iterator, List, Optional, Tuple, Union
|
|
|
|
from langchain.agents import AgentExecutor
|
|
from langchain.agents.agent import ExceptionTool
|
|
from langchain.agents.tools import InvalidTool
|
|
from langchain.callbacks.manager import CallbackManagerForChainRun
|
|
from langchain_core.agents import AgentAction, AgentFinish, AgentStep
|
|
from langchain_core.exceptions import OutputParserException
|
|
from langchain_core.tools import BaseTool
|
|
|
|
from ..tools.cache_tools import CacheTools
|
|
from .cache.cache_hit import CacheHit
|
|
|
|
|
|
class CrewAgentExecutor(AgentExecutor):
|
|
def _iter_next_step(
|
|
self,
|
|
name_to_tool_map: Dict[str, BaseTool],
|
|
color_mapping: Dict[str, str],
|
|
inputs: Dict[str, str],
|
|
intermediate_steps: List[Tuple[AgentAction, str]],
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
) -> Iterator[Union[AgentFinish, AgentAction, AgentStep]]:
|
|
"""Take a single step in the thought-action-observation loop.
|
|
|
|
Override this to take control of how the agent makes and acts on choices.
|
|
"""
|
|
try:
|
|
intermediate_steps = self._prepare_intermediate_steps(intermediate_steps)
|
|
|
|
# Call the LLM to see what to do.
|
|
output = self.agent.plan(
|
|
intermediate_steps,
|
|
callbacks=run_manager.get_child() if run_manager else None,
|
|
**inputs,
|
|
)
|
|
except OutputParserException as e:
|
|
if isinstance(self.handle_parsing_errors, bool):
|
|
raise_error = not self.handle_parsing_errors
|
|
else:
|
|
raise_error = False
|
|
if raise_error:
|
|
raise ValueError(
|
|
"An output parsing error occurred. "
|
|
"In order to pass this error back to the agent and have it try "
|
|
"again, pass `handle_parsing_errors=True` to the AgentExecutor. "
|
|
f"This is the error: {str(e)}"
|
|
)
|
|
text = str(e)
|
|
if isinstance(self.handle_parsing_errors, bool):
|
|
if e.send_to_llm:
|
|
observation = str(e.observation)
|
|
text = str(e.llm_output)
|
|
else:
|
|
observation = "Invalid or incomplete response"
|
|
elif isinstance(self.handle_parsing_errors, str):
|
|
observation = self.handle_parsing_errors
|
|
elif callable(self.handle_parsing_errors):
|
|
observation = self.handle_parsing_errors(e)
|
|
else:
|
|
raise ValueError("Got unexpected type of `handle_parsing_errors`")
|
|
output = AgentAction("_Exception", observation, text)
|
|
if run_manager:
|
|
run_manager.on_agent_action(output, color="green")
|
|
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
|
observation = ExceptionTool().run(
|
|
output.tool_input,
|
|
verbose=self.verbose,
|
|
color=None,
|
|
callbacks=run_manager.get_child() if run_manager else None,
|
|
**tool_run_kwargs,
|
|
)
|
|
yield AgentStep(action=output, observation=observation)
|
|
return
|
|
|
|
# If the tool chosen is the finishing tool, then we end and return.
|
|
if isinstance(output, AgentFinish):
|
|
yield output
|
|
return
|
|
|
|
# Override tool usage to use CacheTools
|
|
if isinstance(output, CacheHit):
|
|
cache = output.cache
|
|
action = output.action
|
|
tool = CacheTools(cache_handler=cache).tool()
|
|
output = action.copy()
|
|
output.tool_input = f"tool:{action.tool}|input:{action.tool_input}"
|
|
output.tool = tool.name
|
|
name_to_tool_map[tool.name] = tool
|
|
color_mapping[tool.name] = color_mapping[action.tool]
|
|
|
|
actions: List[AgentAction]
|
|
if isinstance(output, AgentAction):
|
|
actions = [output]
|
|
else:
|
|
actions = output
|
|
for agent_action in actions:
|
|
yield agent_action
|
|
for agent_action in actions:
|
|
if run_manager:
|
|
run_manager.on_agent_action(agent_action, color="green")
|
|
# Otherwise we lookup the tool
|
|
if agent_action.tool in name_to_tool_map:
|
|
tool = name_to_tool_map[agent_action.tool]
|
|
return_direct = tool.return_direct
|
|
color = color_mapping[agent_action.tool]
|
|
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
|
if return_direct:
|
|
tool_run_kwargs["llm_prefix"] = ""
|
|
# We then call the tool on the tool input to get an observation
|
|
observation = tool.run(
|
|
agent_action.tool_input,
|
|
verbose=self.verbose,
|
|
color=color,
|
|
callbacks=run_manager.get_child() if run_manager else None,
|
|
**tool_run_kwargs,
|
|
)
|
|
else:
|
|
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
|
observation = InvalidTool().run(
|
|
{
|
|
"requested_tool_name": agent_action.tool,
|
|
"available_tool_names": list(name_to_tool_map.keys()),
|
|
},
|
|
verbose=self.verbose,
|
|
color=None,
|
|
callbacks=run_manager.get_child() if run_manager else None,
|
|
**tool_run_kwargs,
|
|
)
|
|
yield AgentStep(action=agent_action, observation=observation)
|