Files
crewAI/src/crewai/llm.py
Lucas Gomide 015e1a41b2 Supporting no-code Guardrail creation (#2636)
* feat: support to define a guardrail task no-code

* feat: add auto-discovery for Guardrail code execution mode

* feat: handle malformed or invalid response from CodeInterpreterTool

* feat: allow to set unsafe_mode from Guardrail task

* feat: renaming GuardrailTask to TaskGuardrail

* feat: ensure guardrail is callable while initializing Task

* feat: remove Docker availability check from TaskGuardrail

The CodeInterpreterTool already ensures compliance with this requirement.

* refactor: replace if/raise with assert

For this use case `assert` is more appropriate choice

* test: remove useless or duplicated test

* fix: attempt to fix type-checker

* feat: support to define a task guardrail using YAML config

* refactor: simplify TaskGuardrail to use LLM for validation, no code generation

* docs: update TaskGuardrail doc strings

* refactor: drop task paramenter from TaskGuardrail

This parameter was used to get the model from the `task.agent` which is a quite bit redudant since we could propagate the llm directly
2025-04-30 10:47:58 -04:00

1110 lines
44 KiB
Python

import json
import logging
import os
import sys
import threading
import warnings
from collections import defaultdict
from contextlib import contextmanager
from types import SimpleNamespace
from typing import (
Any,
DefaultDict,
Dict,
List,
Literal,
Optional,
Type,
TypedDict,
Union,
cast,
)
from dotenv import load_dotenv
from litellm.types.utils import ChatCompletionDeltaToolCall
from pydantic import BaseModel, Field
from crewai.utilities.events.llm_events import (
LLMCallCompletedEvent,
LLMCallFailedEvent,
LLMCallStartedEvent,
LLMCallType,
LLMStreamChunkEvent,
)
from crewai.utilities.events.tool_usage_events import ToolExecutionErrorEvent
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
import litellm
from litellm import Choices
from litellm.exceptions import ContextWindowExceededError
from litellm.litellm_core_utils.get_supported_openai_params import (
get_supported_openai_params,
)
from litellm.types.utils import ModelResponse
from litellm.utils import supports_response_schema
from crewai.llms.base_llm import BaseLLM
from crewai.utilities.events import crewai_event_bus
from crewai.utilities.exceptions.context_window_exceeding_exception import (
LLMContextLengthExceededException,
)
load_dotenv()
class FilteredStream:
def __init__(self, original_stream):
self._original_stream = original_stream
self._lock = threading.Lock()
def write(self, s) -> int:
with self._lock:
# Filter out extraneous messages from LiteLLM
if (
"Give Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new"
in s
or "LiteLLM.Info: If you need to debug this error, use `litellm._turn_on_debug()`"
in s
):
return 0
return self._original_stream.write(s)
def flush(self):
with self._lock:
return self._original_stream.flush()
LLM_CONTEXT_WINDOW_SIZES = {
# openai
"gpt-4": 8192,
"gpt-4o": 128000,
"gpt-4o-mini": 128000,
"gpt-4-turbo": 128000,
"gpt-4.1": 1047576, # Based on official docs
"gpt-4.1-mini-2025-04-14": 1047576,
"gpt-4.1-nano-2025-04-14": 1047576,
"o1-preview": 128000,
"o1-mini": 128000,
"o3-mini": 200000, # Based on official o3-mini specifications
# gemini
"gemini-2.0-flash": 1048576,
"gemini-2.0-flash-thinking-exp-01-21": 32768,
"gemini-2.0-flash-lite-001": 1048576,
"gemini-2.0-flash-001": 1048576,
"gemini-2.5-flash-preview-04-17": 1048576,
"gemini-2.5-pro-exp-03-25": 1048576,
"gemini-1.5-pro": 2097152,
"gemini-1.5-flash": 1048576,
"gemini-1.5-flash-8b": 1048576,
"gemini/gemma-3-1b-it": 32000,
"gemini/gemma-3-4b-it": 128000,
"gemini/gemma-3-12b-it": 128000,
"gemini/gemma-3-27b-it": 128000,
# deepseek
"deepseek-chat": 128000,
# groq
"gemma2-9b-it": 8192,
"gemma-7b-it": 8192,
"llama3-groq-70b-8192-tool-use-preview": 8192,
"llama3-groq-8b-8192-tool-use-preview": 8192,
"llama-3.1-70b-versatile": 131072,
"llama-3.1-8b-instant": 131072,
"llama-3.2-1b-preview": 8192,
"llama-3.2-3b-preview": 8192,
"llama-3.2-11b-text-preview": 8192,
"llama-3.2-90b-text-preview": 8192,
"llama3-70b-8192": 8192,
"llama3-8b-8192": 8192,
"mixtral-8x7b-32768": 32768,
"llama-3.3-70b-versatile": 128000,
"llama-3.3-70b-instruct": 128000,
# sambanova
"Meta-Llama-3.3-70B-Instruct": 131072,
"QwQ-32B-Preview": 8192,
"Qwen2.5-72B-Instruct": 8192,
"Qwen2.5-Coder-32B-Instruct": 8192,
"Meta-Llama-3.1-405B-Instruct": 8192,
"Meta-Llama-3.1-70B-Instruct": 131072,
"Meta-Llama-3.1-8B-Instruct": 131072,
"Llama-3.2-90B-Vision-Instruct": 16384,
"Llama-3.2-11B-Vision-Instruct": 16384,
"Meta-Llama-3.2-3B-Instruct": 4096,
"Meta-Llama-3.2-1B-Instruct": 16384,
# bedrock
"us.amazon.nova-pro-v1:0": 300000,
"us.amazon.nova-micro-v1:0": 128000,
"us.amazon.nova-lite-v1:0": 300000,
"us.anthropic.claude-3-5-sonnet-20240620-v1:0": 200000,
"us.anthropic.claude-3-5-haiku-20241022-v1:0": 200000,
"us.anthropic.claude-3-5-sonnet-20241022-v2:0": 200000,
"us.anthropic.claude-3-7-sonnet-20250219-v1:0": 200000,
"us.anthropic.claude-3-sonnet-20240229-v1:0": 200000,
"us.anthropic.claude-3-opus-20240229-v1:0": 200000,
"us.anthropic.claude-3-haiku-20240307-v1:0": 200000,
"us.meta.llama3-2-11b-instruct-v1:0": 128000,
"us.meta.llama3-2-3b-instruct-v1:0": 131000,
"us.meta.llama3-2-90b-instruct-v1:0": 128000,
"us.meta.llama3-2-1b-instruct-v1:0": 131000,
"us.meta.llama3-1-8b-instruct-v1:0": 128000,
"us.meta.llama3-1-70b-instruct-v1:0": 128000,
"us.meta.llama3-3-70b-instruct-v1:0": 128000,
"us.meta.llama3-1-405b-instruct-v1:0": 128000,
"eu.anthropic.claude-3-5-sonnet-20240620-v1:0": 200000,
"eu.anthropic.claude-3-sonnet-20240229-v1:0": 200000,
"eu.anthropic.claude-3-haiku-20240307-v1:0": 200000,
"eu.meta.llama3-2-3b-instruct-v1:0": 131000,
"eu.meta.llama3-2-1b-instruct-v1:0": 131000,
"apac.anthropic.claude-3-5-sonnet-20240620-v1:0": 200000,
"apac.anthropic.claude-3-5-sonnet-20241022-v2:0": 200000,
"apac.anthropic.claude-3-sonnet-20240229-v1:0": 200000,
"apac.anthropic.claude-3-haiku-20240307-v1:0": 200000,
"amazon.nova-pro-v1:0": 300000,
"amazon.nova-micro-v1:0": 128000,
"amazon.nova-lite-v1:0": 300000,
"anthropic.claude-3-5-sonnet-20240620-v1:0": 200000,
"anthropic.claude-3-5-haiku-20241022-v1:0": 200000,
"anthropic.claude-3-5-sonnet-20241022-v2:0": 200000,
"anthropic.claude-3-7-sonnet-20250219-v1:0": 200000,
"anthropic.claude-3-sonnet-20240229-v1:0": 200000,
"anthropic.claude-3-opus-20240229-v1:0": 200000,
"anthropic.claude-3-haiku-20240307-v1:0": 200000,
"anthropic.claude-v2:1": 200000,
"anthropic.claude-v2": 100000,
"anthropic.claude-instant-v1": 100000,
"meta.llama3-1-405b-instruct-v1:0": 128000,
"meta.llama3-1-70b-instruct-v1:0": 128000,
"meta.llama3-1-8b-instruct-v1:0": 128000,
"meta.llama3-70b-instruct-v1:0": 8000,
"meta.llama3-8b-instruct-v1:0": 8000,
"amazon.titan-text-lite-v1": 4000,
"amazon.titan-text-express-v1": 8000,
"cohere.command-text-v14": 4000,
"ai21.j2-mid-v1": 8191,
"ai21.j2-ultra-v1": 8191,
"ai21.jamba-instruct-v1:0": 256000,
"mistral.mistral-7b-instruct-v0:2": 32000,
"mistral.mixtral-8x7b-instruct-v0:1": 32000,
# mistral
"mistral-tiny": 32768,
"mistral-small-latest": 32768,
"mistral-medium-latest": 32768,
"mistral-large-latest": 32768,
"mistral-large-2407": 32768,
"mistral-large-2402": 32768,
"mistral/mistral-tiny": 32768,
"mistral/mistral-small-latest": 32768,
"mistral/mistral-medium-latest": 32768,
"mistral/mistral-large-latest": 32768,
"mistral/mistral-large-2407": 32768,
"mistral/mistral-large-2402": 32768,
}
DEFAULT_CONTEXT_WINDOW_SIZE = 8192
CONTEXT_WINDOW_USAGE_RATIO = 0.75
@contextmanager
def suppress_warnings():
with warnings.catch_warnings():
warnings.filterwarnings("ignore")
warnings.filterwarnings(
"ignore", message="open_text is deprecated*", category=DeprecationWarning
)
# Redirect stdout and stderr
old_stdout = sys.stdout
old_stderr = sys.stderr
sys.stdout = FilteredStream(old_stdout)
sys.stderr = FilteredStream(old_stderr)
try:
yield
finally:
sys.stdout = old_stdout
sys.stderr = old_stderr
class Delta(TypedDict):
content: Optional[str]
role: Optional[str]
class StreamingChoices(TypedDict):
delta: Delta
index: int
finish_reason: Optional[str]
class FunctionArgs(BaseModel):
name: str = ""
arguments: str = ""
class AccumulatedToolArgs(BaseModel):
function: FunctionArgs = Field(default_factory=FunctionArgs)
class LLM(BaseLLM):
def __init__(
self,
model: str,
timeout: Optional[Union[float, int]] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
n: Optional[int] = None,
stop: Optional[Union[str, List[str]]] = None,
max_completion_tokens: Optional[int] = None,
max_tokens: Optional[int] = None,
presence_penalty: Optional[float] = None,
frequency_penalty: Optional[float] = None,
logit_bias: Optional[Dict[int, float]] = None,
response_format: Optional[Type[BaseModel]] = None,
seed: Optional[int] = None,
logprobs: Optional[int] = None,
top_logprobs: Optional[int] = None,
base_url: Optional[str] = None,
api_base: Optional[str] = None,
api_version: Optional[str] = None,
api_key: Optional[str] = None,
callbacks: List[Any] = [],
reasoning_effort: Optional[Literal["none", "low", "medium", "high"]] = None,
stream: bool = False,
**kwargs,
):
self.model = model
self.timeout = timeout
self.temperature = temperature
self.top_p = top_p
self.n = n
self.max_completion_tokens = max_completion_tokens
self.max_tokens = max_tokens
self.presence_penalty = presence_penalty
self.frequency_penalty = frequency_penalty
self.logit_bias = logit_bias
self.response_format = response_format
self.seed = seed
self.logprobs = logprobs
self.top_logprobs = top_logprobs
self.base_url = base_url
self.api_base = api_base
self.api_version = api_version
self.api_key = api_key
self.callbacks = callbacks
self.context_window_size = 0
self.reasoning_effort = reasoning_effort
self.additional_params = kwargs
self.is_anthropic = self._is_anthropic_model(model)
self.stream = stream
litellm.drop_params = True
# Normalize self.stop to always be a List[str]
if stop is None:
self.stop: List[str] = []
elif isinstance(stop, str):
self.stop = [stop]
else:
self.stop = stop
self.set_callbacks(callbacks)
self.set_env_callbacks()
def _is_anthropic_model(self, model: str) -> bool:
"""Determine if the model is from Anthropic provider.
Args:
model: The model identifier string.
Returns:
bool: True if the model is from Anthropic, False otherwise.
"""
ANTHROPIC_PREFIXES = ("anthropic/", "claude-", "claude/")
return any(prefix in model.lower() for prefix in ANTHROPIC_PREFIXES)
def _prepare_completion_params(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
) -> Dict[str, Any]:
"""Prepare parameters for the completion call.
Args:
messages: Input messages for the LLM
tools: Optional list of tool schemas
callbacks: Optional list of callback functions
available_functions: Optional dict of available functions
Returns:
Dict[str, Any]: Parameters for the completion call
"""
# --- 1) Format messages according to provider requirements
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
formatted_messages = self._format_messages_for_provider(messages)
# --- 2) Prepare the parameters for the completion call
params = {
"model": self.model,
"messages": formatted_messages,
"timeout": self.timeout,
"temperature": self.temperature,
"top_p": self.top_p,
"n": self.n,
"stop": self.stop,
"max_tokens": self.max_tokens or self.max_completion_tokens,
"presence_penalty": self.presence_penalty,
"frequency_penalty": self.frequency_penalty,
"logit_bias": self.logit_bias,
"response_format": self.response_format,
"seed": self.seed,
"logprobs": self.logprobs,
"top_logprobs": self.top_logprobs,
"api_base": self.api_base,
"base_url": self.base_url,
"api_version": self.api_version,
"api_key": self.api_key,
"stream": self.stream,
"tools": tools,
"reasoning_effort": self.reasoning_effort,
**self.additional_params,
}
# Remove None values from params
return {k: v for k, v in params.items() if v is not None}
def _handle_streaming_response(
self,
params: Dict[str, Any],
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> str:
"""Handle a streaming response from the LLM.
Args:
params: Parameters for the completion call
callbacks: Optional list of callback functions
available_functions: Dict of available functions
Returns:
str: The complete response text
Raises:
Exception: If no content is received from the streaming response
"""
# --- 1) Initialize response tracking
full_response = ""
last_chunk = None
chunk_count = 0
usage_info = None
tool_calls = None
accumulated_tool_args: DefaultDict[int, AccumulatedToolArgs] = defaultdict(
AccumulatedToolArgs
)
# --- 2) Make sure stream is set to True and include usage metrics
params["stream"] = True
params["stream_options"] = {"include_usage": True}
try:
# --- 3) Process each chunk in the stream
for chunk in litellm.completion(**params):
chunk_count += 1
last_chunk = chunk
# Extract content from the chunk
chunk_content = None
# Safely extract content from various chunk formats
try:
# Try to access choices safely
choices = None
if isinstance(chunk, dict) and "choices" in chunk:
choices = chunk["choices"]
elif hasattr(chunk, "choices"):
# Check if choices is not a type but an actual attribute with value
if not isinstance(getattr(chunk, "choices"), type):
choices = getattr(chunk, "choices")
# Try to extract usage information if available
if isinstance(chunk, dict) and "usage" in chunk:
usage_info = chunk["usage"]
elif hasattr(chunk, "usage"):
# Check if usage is not a type but an actual attribute with value
if not isinstance(getattr(chunk, "usage"), type):
usage_info = getattr(chunk, "usage")
if choices and len(choices) > 0:
choice = choices[0]
# Handle different delta formats
delta = None
if isinstance(choice, dict) and "delta" in choice:
delta = choice["delta"]
elif hasattr(choice, "delta"):
delta = getattr(choice, "delta")
# Extract content from delta
if delta:
# Handle dict format
if isinstance(delta, dict):
if "content" in delta and delta["content"] is not None:
chunk_content = delta["content"]
# Handle object format
elif hasattr(delta, "content"):
chunk_content = getattr(delta, "content")
# Handle case where content might be None or empty
if chunk_content is None and isinstance(delta, dict):
# Some models might send empty content chunks
chunk_content = ""
# Enable tool calls using streaming
if "tool_calls" in delta:
tool_calls = delta["tool_calls"]
if tool_calls:
result = self._handle_streaming_tool_calls(
tool_calls=tool_calls,
accumulated_tool_args=accumulated_tool_args,
available_functions=available_functions,
)
if result is not None:
chunk_content = result
except Exception as e:
logging.debug(f"Error extracting content from chunk: {e}")
logging.debug(f"Chunk format: {type(chunk)}, content: {chunk}")
# Only add non-None content to the response
if chunk_content is not None:
# Add the chunk content to the full response
full_response += chunk_content
# Emit the chunk event
assert hasattr(crewai_event_bus, "emit")
crewai_event_bus.emit(
self,
event=LLMStreamChunkEvent(chunk=chunk_content),
)
# --- 4) Fallback to non-streaming if no content received
if not full_response.strip() and chunk_count == 0:
logging.warning(
"No chunks received in streaming response, falling back to non-streaming"
)
non_streaming_params = params.copy()
non_streaming_params["stream"] = False
non_streaming_params.pop(
"stream_options", None
) # Remove stream_options for non-streaming call
return self._handle_non_streaming_response(
non_streaming_params, callbacks, available_functions
)
# --- 5) Handle empty response with chunks
if not full_response.strip() and chunk_count > 0:
logging.warning(
f"Received {chunk_count} chunks but no content was extracted"
)
if last_chunk is not None:
try:
# Try to extract content from the last chunk's message
choices = None
if isinstance(last_chunk, dict) and "choices" in last_chunk:
choices = last_chunk["choices"]
elif hasattr(last_chunk, "choices"):
if not isinstance(getattr(last_chunk, "choices"), type):
choices = getattr(last_chunk, "choices")
if choices and len(choices) > 0:
choice = choices[0]
# Try to get content from message
message = None
if isinstance(choice, dict) and "message" in choice:
message = choice["message"]
elif hasattr(choice, "message"):
message = getattr(choice, "message")
if message:
content = None
if isinstance(message, dict) and "content" in message:
content = message["content"]
elif hasattr(message, "content"):
content = getattr(message, "content")
if content:
full_response = content
logging.info(
f"Extracted content from last chunk message: {full_response}"
)
except Exception as e:
logging.debug(f"Error extracting content from last chunk: {e}")
logging.debug(
f"Last chunk format: {type(last_chunk)}, content: {last_chunk}"
)
# --- 6) If still empty, raise an error instead of using a default response
if not full_response.strip() and len(accumulated_tool_args) == 0:
raise Exception(
"No content received from streaming response. Received empty chunks or failed to extract content."
)
# --- 7) Check for tool calls in the final response
tool_calls = None
try:
if last_chunk:
choices = None
if isinstance(last_chunk, dict) and "choices" in last_chunk:
choices = last_chunk["choices"]
elif hasattr(last_chunk, "choices"):
if not isinstance(getattr(last_chunk, "choices"), type):
choices = getattr(last_chunk, "choices")
if choices and len(choices) > 0:
choice = choices[0]
message = None
if isinstance(choice, dict) and "message" in choice:
message = choice["message"]
elif hasattr(choice, "message"):
message = getattr(choice, "message")
if message:
if isinstance(message, dict) and "tool_calls" in message:
tool_calls = message["tool_calls"]
elif hasattr(message, "tool_calls"):
tool_calls = getattr(message, "tool_calls")
except Exception as e:
logging.debug(f"Error checking for tool calls: {e}")
# --- 8) If no tool calls or no available functions, return the text response directly
if not tool_calls or not available_functions:
# Log token usage if available in streaming mode
self._handle_streaming_callbacks(callbacks, usage_info, last_chunk)
# Emit completion event and return response
self._handle_emit_call_events(full_response, LLMCallType.LLM_CALL)
return full_response
# --- 9) Handle tool calls if present
tool_result = self._handle_tool_call(tool_calls, available_functions)
if tool_result is not None:
return tool_result
# --- 10) Log token usage if available in streaming mode
self._handle_streaming_callbacks(callbacks, usage_info, last_chunk)
# --- 11) Emit completion event and return response
self._handle_emit_call_events(full_response, LLMCallType.LLM_CALL)
return full_response
except ContextWindowExceededError as e:
# Catch context window errors from litellm and convert them to our own exception type.
# This exception is handled by CrewAgentExecutor._invoke_loop() which can then
# decide whether to summarize the content or abort based on the respect_context_window flag.
raise LLMContextLengthExceededException(str(e))
except Exception as e:
logging.error(f"Error in streaming response: {str(e)}")
if full_response.strip():
logging.warning(f"Returning partial response despite error: {str(e)}")
self._handle_emit_call_events(full_response, LLMCallType.LLM_CALL)
return full_response
# Emit failed event and re-raise the exception
assert hasattr(crewai_event_bus, "emit")
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(error=str(e)),
)
raise Exception(f"Failed to get streaming response: {str(e)}")
def _handle_streaming_tool_calls(
self,
tool_calls: List[ChatCompletionDeltaToolCall],
accumulated_tool_args: DefaultDict[int, AccumulatedToolArgs],
available_functions: Optional[Dict[str, Any]] = None,
) -> None | str:
for tool_call in tool_calls:
current_tool_accumulator = accumulated_tool_args[tool_call.index]
if tool_call.function.name:
current_tool_accumulator.function.name = tool_call.function.name
if tool_call.function.arguments:
current_tool_accumulator.function.arguments += (
tool_call.function.arguments
)
assert hasattr(crewai_event_bus, "emit")
crewai_event_bus.emit(
self,
event=LLMStreamChunkEvent(
tool_call=tool_call.to_dict(),
chunk=tool_call.function.arguments,
),
)
if (
current_tool_accumulator.function.name
and current_tool_accumulator.function.arguments
and available_functions
):
try:
json.loads(current_tool_accumulator.function.arguments)
return self._handle_tool_call(
[current_tool_accumulator],
available_functions,
)
except json.JSONDecodeError:
continue
return None
def _handle_streaming_callbacks(
self,
callbacks: Optional[List[Any]],
usage_info: Optional[Dict[str, Any]],
last_chunk: Optional[Any],
) -> None:
"""Handle callbacks with usage info for streaming responses.
Args:
callbacks: Optional list of callback functions
usage_info: Usage information collected during streaming
last_chunk: The last chunk received from the streaming response
"""
if callbacks and len(callbacks) > 0:
for callback in callbacks:
if hasattr(callback, "log_success_event"):
# Use the usage_info we've been tracking
if not usage_info:
# Try to get usage from the last chunk if we haven't already
try:
if last_chunk:
if (
isinstance(last_chunk, dict)
and "usage" in last_chunk
):
usage_info = last_chunk["usage"]
elif hasattr(last_chunk, "usage"):
if not isinstance(
getattr(last_chunk, "usage"), type
):
usage_info = getattr(last_chunk, "usage")
except Exception as e:
logging.debug(f"Error extracting usage info: {e}")
if usage_info:
callback.log_success_event(
kwargs={}, # We don't have the original params here
response_obj={"usage": usage_info},
start_time=0,
end_time=0,
)
def _handle_non_streaming_response(
self,
params: Dict[str, Any],
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> str:
"""Handle a non-streaming response from the LLM.
Args:
params: Parameters for the completion call
callbacks: Optional list of callback functions
available_functions: Dict of available functions
Returns:
str: The response text
"""
# --- 1) Make the completion call
try:
# Attempt to make the completion call, but catch context window errors
# and convert them to our own exception type for consistent handling
# across the codebase. This allows CrewAgentExecutor to handle context
# length issues appropriately.
response = litellm.completion(**params)
except ContextWindowExceededError as e:
# Convert litellm's context window error to our own exception type
# for consistent handling in the rest of the codebase
raise LLMContextLengthExceededException(str(e))
# --- 2) Extract response message and content
response_message = cast(Choices, cast(ModelResponse, response).choices)[
0
].message
text_response = response_message.content or ""
# --- 3) Handle callbacks with usage info
if callbacks and len(callbacks) > 0:
for callback in callbacks:
if hasattr(callback, "log_success_event"):
usage_info = getattr(response, "usage", None)
if usage_info:
callback.log_success_event(
kwargs=params,
response_obj={"usage": usage_info},
start_time=0,
end_time=0,
)
# --- 4) Check for tool calls
tool_calls = getattr(response_message, "tool_calls", [])
# --- 5) If no tool calls or no available functions, return the text response directly
if not tool_calls or not available_functions:
self._handle_emit_call_events(text_response, LLMCallType.LLM_CALL)
return text_response
# --- 6) Handle tool calls if present
tool_result = self._handle_tool_call(tool_calls, available_functions)
if tool_result is not None:
return tool_result
# --- 7) If tool call handling didn't return a result, emit completion event and return text response
self._handle_emit_call_events(text_response, LLMCallType.LLM_CALL)
return text_response
def _handle_tool_call(
self,
tool_calls: List[Any],
available_functions: Optional[Dict[str, Any]] = None,
) -> Optional[str]:
"""Handle a tool call from the LLM.
Args:
tool_calls: List of tool calls from the LLM
available_functions: Dict of available functions
Returns:
Optional[str]: The result of the tool call, or None if no tool call was made
"""
# --- 1) Validate tool calls and available functions
if not tool_calls or not available_functions:
return None
# --- 2) Extract function name from first tool call
tool_call = tool_calls[0]
function_name = tool_call.function.name
function_args = {} # Initialize to empty dict to avoid unbound variable
# --- 3) Check if function is available
if function_name in available_functions:
try:
# --- 3.1) Parse function arguments
function_args = json.loads(tool_call.function.arguments)
fn = available_functions[function_name]
# --- 3.2) Execute function
result = fn(**function_args)
# --- 3.3) Emit success event
self._handle_emit_call_events(result, LLMCallType.TOOL_CALL)
return result
except Exception as e:
# --- 3.4) Handle execution errors
fn = available_functions.get(
function_name, lambda: None
) # Ensure fn is always a callable
logging.error(f"Error executing function '{function_name}': {e}")
assert hasattr(crewai_event_bus, "emit")
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(error=f"Tool execution error: {str(e)}"),
)
return None
def call(
self,
messages: Union[str, List[Dict[str, str]]],
tools: Optional[List[dict]] = None,
callbacks: Optional[List[Any]] = None,
available_functions: Optional[Dict[str, Any]] = None,
) -> Union[str, Any]:
"""High-level LLM call method.
Args:
messages: Input messages for the LLM.
Can be a string or list of message dictionaries.
If string, it will be converted to a single user message.
If list, each dict must have 'role' and 'content' keys.
tools: Optional list of tool schemas for function calling.
Each tool should define its name, description, and parameters.
callbacks: Optional list of callback functions to be executed
during and after the LLM call.
available_functions: Optional dict mapping function names to callables
that can be invoked by the LLM.
Returns:
Union[str, Any]: Either a text response from the LLM (str) or
the result of a tool function call (Any).
Raises:
TypeError: If messages format is invalid
ValueError: If response format is not supported
LLMContextLengthExceededException: If input exceeds model's context limit
"""
# --- 1) Emit call started event
assert hasattr(crewai_event_bus, "emit")
crewai_event_bus.emit(
self,
event=LLMCallStartedEvent(
messages=messages,
tools=tools,
callbacks=callbacks,
available_functions=available_functions,
),
)
# --- 2) Validate parameters before proceeding with the call
self._validate_call_params()
# --- 3) Convert string messages to proper format if needed
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
# --- 4) Handle O1 model special case (system messages not supported)
if "o1" in self.model.lower():
for message in messages:
if message.get("role") == "system":
message["role"] = "assistant"
# --- 5) Set up callbacks if provided
with suppress_warnings():
if callbacks and len(callbacks) > 0:
self.set_callbacks(callbacks)
try:
# --- 6) Prepare parameters for the completion call
params = self._prepare_completion_params(messages, tools)
# --- 7) Make the completion call and handle response
if self.stream:
return self._handle_streaming_response(
params, callbacks, available_functions
)
else:
return self._handle_non_streaming_response(
params, callbacks, available_functions
)
except LLMContextLengthExceededException:
# Re-raise LLMContextLengthExceededException as it should be handled
# by the CrewAgentExecutor._invoke_loop method, which can then decide
# whether to summarize the content or abort based on the respect_context_window flag
raise
except Exception as e:
assert hasattr(crewai_event_bus, "emit")
crewai_event_bus.emit(
self,
event=LLMCallFailedEvent(error=str(e)),
)
logging.error(f"LiteLLM call failed: {str(e)}")
raise
def _handle_emit_call_events(self, response: Any, call_type: LLMCallType):
"""Handle the events for the LLM call.
Args:
response (str): The response from the LLM call.
call_type (str): The type of call, either "tool_call" or "llm_call".
"""
assert hasattr(crewai_event_bus, "emit")
crewai_event_bus.emit(
self,
event=LLMCallCompletedEvent(response=response, call_type=call_type),
)
def _format_messages_for_provider(
self, messages: List[Dict[str, str]]
) -> List[Dict[str, str]]:
"""Format messages according to provider requirements.
Args:
messages: List of message dictionaries with 'role' and 'content' keys.
Can be empty or None.
Returns:
List of formatted messages according to provider requirements.
For Anthropic models, ensures first message has 'user' role.
Raises:
TypeError: If messages is None or contains invalid message format.
"""
if messages is None:
raise TypeError("Messages cannot be None")
# Validate message format first
for msg in messages:
if not isinstance(msg, dict) or "role" not in msg or "content" not in msg:
raise TypeError(
"Invalid message format. Each message must be a dict with 'role' and 'content' keys"
)
# Handle O1 models specially
if "o1" in self.model.lower():
formatted_messages = []
for msg in messages:
# Convert system messages to assistant messages
if msg["role"] == "system":
formatted_messages.append(
{"role": "assistant", "content": msg["content"]}
)
else:
formatted_messages.append(msg)
return formatted_messages
# Handle Mistral models - they require the last message to have a role of 'user' or 'tool'
if "mistral" in self.model.lower():
# Check if the last message has a role of 'assistant'
if messages and messages[-1]["role"] == "assistant":
# Add a dummy user message to ensure the last message has a role of 'user'
messages = (
messages.copy()
) # Create a copy to avoid modifying the original
messages.append({"role": "user", "content": "Please continue."})
return messages
# Handle Anthropic models
if not self.is_anthropic:
return messages
# Anthropic requires messages to start with 'user' role
if not messages or messages[0]["role"] == "system":
# If first message is system or empty, add a placeholder user message
return [{"role": "user", "content": "."}, *messages]
return messages
def _get_custom_llm_provider(self) -> Optional[str]:
"""
Derives the custom_llm_provider from the model string.
- For example, if the model is "openrouter/deepseek/deepseek-chat", returns "openrouter".
- If the model is "gemini/gemini-1.5-pro", returns "gemini".
- If there is no '/', defaults to "openai".
"""
if "/" in self.model:
return self.model.split("/")[0]
return None
def _validate_call_params(self) -> None:
"""
Validate parameters before making a call. Currently this only checks if
a response_format is provided and whether the model supports it.
The custom_llm_provider is dynamically determined from the model:
- E.g., "openrouter/deepseek/deepseek-chat" yields "openrouter"
- "gemini/gemini-1.5-pro" yields "gemini"
- If no slash is present, "openai" is assumed.
"""
provider = self._get_custom_llm_provider()
if self.response_format is not None and not supports_response_schema(
model=self.model,
custom_llm_provider=provider,
):
raise ValueError(
f"The model {self.model} does not support response_format for provider '{provider}'. "
"Please remove response_format or use a supported model."
)
def supports_function_calling(self) -> bool:
try:
provider = self._get_custom_llm_provider()
return litellm.utils.supports_function_calling(
self.model, custom_llm_provider=provider
)
except Exception as e:
logging.error(f"Failed to check function calling support: {str(e)}")
return False
def supports_stop_words(self) -> bool:
try:
params = get_supported_openai_params(model=self.model)
return params is not None and "stop" in params
except Exception as e:
logging.error(f"Failed to get supported params: {str(e)}")
return False
def get_context_window_size(self) -> int:
"""
Returns the context window size, using 75% of the maximum to avoid
cutting off messages mid-thread.
Raises:
ValueError: If a model's context window size is outside valid bounds (1024-2097152)
"""
if self.context_window_size != 0:
return self.context_window_size
MIN_CONTEXT = 1024
MAX_CONTEXT = 2097152 # Current max from gemini-1.5-pro
# Validate all context window sizes
for key, value in LLM_CONTEXT_WINDOW_SIZES.items():
if value < MIN_CONTEXT or value > MAX_CONTEXT:
raise ValueError(
f"Context window for {key} must be between {MIN_CONTEXT} and {MAX_CONTEXT}"
)
self.context_window_size = int(
DEFAULT_CONTEXT_WINDOW_SIZE * CONTEXT_WINDOW_USAGE_RATIO
)
for key, value in LLM_CONTEXT_WINDOW_SIZES.items():
if self.model.startswith(key):
self.context_window_size = int(value * CONTEXT_WINDOW_USAGE_RATIO)
return self.context_window_size
def set_callbacks(self, callbacks: List[Any]):
"""
Attempt to keep a single set of callbacks in litellm by removing old
duplicates and adding new ones.
"""
with suppress_warnings():
callback_types = [type(callback) for callback in callbacks]
for callback in litellm.success_callback[:]:
if type(callback) in callback_types:
litellm.success_callback.remove(callback)
for callback in litellm._async_success_callback[:]:
if type(callback) in callback_types:
litellm._async_success_callback.remove(callback)
litellm.callbacks = callbacks
def set_env_callbacks(self):
"""
Sets the success and failure callbacks for the LiteLLM library from environment variables.
This method reads the `LITELLM_SUCCESS_CALLBACKS` and `LITELLM_FAILURE_CALLBACKS`
environment variables, which should contain comma-separated lists of callback names.
It then assigns these lists to `litellm.success_callback` and `litellm.failure_callback`,
respectively.
If the environment variables are not set or are empty, the corresponding callback lists
will be set to empty lists.
Example:
LITELLM_SUCCESS_CALLBACKS="langfuse,langsmith"
LITELLM_FAILURE_CALLBACKS="langfuse"
This will set `litellm.success_callback` to ["langfuse", "langsmith"] and
`litellm.failure_callback` to ["langfuse"].
"""
with suppress_warnings():
success_callbacks_str = os.environ.get("LITELLM_SUCCESS_CALLBACKS", "")
success_callbacks = []
if success_callbacks_str:
success_callbacks = [
cb.strip() for cb in success_callbacks_str.split(",") if cb.strip()
]
failure_callbacks_str = os.environ.get("LITELLM_FAILURE_CALLBACKS", "")
failure_callbacks = []
if failure_callbacks_str:
failure_callbacks = [
cb.strip() for cb in failure_callbacks_str.split(",") if cb.strip()
]
litellm.success_callback = success_callbacks
litellm.failure_callback = failure_callbacks