Files
crewAI/lib/crewai/tests/llms/google/test_google.py
2025-11-06 21:10:25 -05:00

703 lines
23 KiB
Python

import os
import sys
import types
from unittest.mock import patch, MagicMock
import pytest
from crewai.llm import LLM
from crewai.crew import Crew
from crewai.agent import Agent
from crewai.task import Task
@pytest.fixture(autouse=True)
def mock_google_api_key():
"""Automatically mock GOOGLE_API_KEY for all tests in this module."""
with patch.dict(os.environ, {"GOOGLE_API_KEY": "test-key"}):
yield
def test_gemini_completion_is_used_when_google_provider():
"""
Test that GeminiCompletion from completion.py is used when LLM uses provider 'google'
"""
llm = LLM(model="google/gemini-2.0-flash-001")
assert llm.__class__.__name__ == "GeminiCompletion"
assert llm.provider == "google"
assert llm.model == "gemini-2.0-flash-001"
def test_gemini_completion_is_used_when_gemini_provider():
"""
Test that GeminiCompletion is used when provider is 'gemini'
"""
llm = LLM(model="gemini/gemini-2.0-flash-001")
from crewai.llms.providers.gemini.completion import GeminiCompletion
assert isinstance(llm, GeminiCompletion)
assert llm.provider == "gemini"
assert llm.model == "gemini-2.0-flash-001"
def test_gemini_tool_use_conversation_flow():
"""
Test that the Gemini completion properly handles tool use conversation flow
"""
from unittest.mock import Mock, patch
from crewai.llms.providers.gemini.completion import GeminiCompletion
# Create GeminiCompletion instance
completion = GeminiCompletion(model="gemini-2.0-flash-001")
# Mock tool function
def mock_weather_tool(location: str) -> str:
return f"The weather in {location} is sunny and 75°F"
available_functions = {"get_weather": mock_weather_tool}
# Mock the Google Gemini client responses
with patch.object(completion.client.models, 'generate_content') as mock_generate:
# Mock function call in response
mock_function_call = Mock()
mock_function_call.name = "get_weather"
mock_function_call.args = {"location": "San Francisco"}
mock_part = Mock()
mock_part.function_call = mock_function_call
mock_content = Mock()
mock_content.parts = [mock_part]
mock_candidate = Mock()
mock_candidate.content = mock_content
mock_response = Mock()
mock_response.candidates = [mock_candidate]
mock_response.text = "Based on the weather data, it's a beautiful day in San Francisco with sunny skies and 75°F temperature."
mock_response.usage_metadata = Mock()
mock_response.usage_metadata.prompt_token_count = 100
mock_response.usage_metadata.candidates_token_count = 50
mock_response.usage_metadata.total_token_count = 150
mock_generate.return_value = mock_response
# Test the call
messages = [{"role": "user", "content": "What's the weather like in San Francisco?"}]
result = completion.call(
messages=messages,
available_functions=available_functions
)
# Verify the tool was executed and returned the result
assert result == "The weather in San Francisco is sunny and 75°F"
# Verify that the API was called
assert mock_generate.called
def test_gemini_completion_module_is_imported():
"""
Test that the completion module is properly imported when using Google provider
"""
module_name = "crewai.llms.providers.gemini.completion"
# Remove module from cache if it exists
if module_name in sys.modules:
del sys.modules[module_name]
# Create LLM instance - this should trigger the import
LLM(model="google/gemini-2.0-flash-001")
# Verify the module was imported
assert module_name in sys.modules
completion_mod = sys.modules[module_name]
assert isinstance(completion_mod, types.ModuleType)
# Verify the class exists in the module
assert hasattr(completion_mod, 'GeminiCompletion')
def test_native_gemini_raises_error_when_initialization_fails():
"""
Test that LLM raises ImportError when native Gemini completion fails.
With the new behavior, when a native provider is in SUPPORTED_NATIVE_PROVIDERS
but fails to instantiate, we raise an ImportError instead of silently falling back.
This provides clearer error messages to users about missing dependencies.
"""
# Mock the _get_native_provider to return a failing class
with patch('crewai.llm.LLM._get_native_provider') as mock_get_provider:
class FailingCompletion:
def __init__(self, *args, **kwargs):
raise Exception("Native Google Gen AI SDK failed")
mock_get_provider.return_value = FailingCompletion
# This should raise ImportError with clear message
with pytest.raises(ImportError) as excinfo:
LLM(model="google/gemini-2.0-flash-001")
# Verify the error message is helpful
assert "Error importing native provider" in str(excinfo.value)
assert "Native Google Gen AI SDK failed" in str(excinfo.value)
def test_gemini_completion_initialization_parameters():
"""
Test that GeminiCompletion is initialized with correct parameters
"""
llm = LLM(
model="google/gemini-2.0-flash-001",
temperature=0.7,
max_output_tokens=2000,
top_p=0.9,
top_k=40,
api_key="test-key"
)
from crewai.llms.providers.gemini.completion import GeminiCompletion
assert isinstance(llm, GeminiCompletion)
assert llm.model == "gemini-2.0-flash-001"
assert llm.temperature == 0.7
assert llm.max_output_tokens == 2000
assert llm.top_p == 0.9
assert llm.top_k == 40
def test_gemini_specific_parameters():
"""
Test Gemini-specific parameters like stop_sequences, streaming, and safety settings
"""
safety_settings = {
"HARM_CATEGORY_HARASSMENT": "BLOCK_MEDIUM_AND_ABOVE",
"HARM_CATEGORY_HATE_SPEECH": "BLOCK_MEDIUM_AND_ABOVE"
}
llm = LLM(
model="google/gemini-2.0-flash-001",
stop_sequences=["Human:", "Assistant:"],
stream=True,
safety_settings=safety_settings,
project="test-project",
location="us-central1"
)
from crewai.llms.providers.gemini.completion import GeminiCompletion
assert isinstance(llm, GeminiCompletion)
assert llm.stop_sequences == ["Human:", "Assistant:"]
assert llm.stream == True
assert llm.safety_settings == safety_settings
assert llm.project == "test-project"
assert llm.location == "us-central1"
def test_gemini_completion_call():
"""
Test that GeminiCompletion call method works
"""
llm = LLM(model="google/gemini-2.0-flash-001")
# Mock the call method on the instance
with patch.object(llm, 'call', return_value="Hello! I'm Gemini, ready to help.") as mock_call:
result = llm.call("Hello, how are you?")
assert result == "Hello! I'm Gemini, ready to help."
mock_call.assert_called_once_with("Hello, how are you?")
def test_gemini_completion_called_during_crew_execution():
"""
Test that GeminiCompletion.call is actually invoked when running a crew
"""
# Create the LLM instance first
gemini_llm = LLM(model="google/gemini-2.0-flash-001")
# Mock the call method on the specific instance
with patch.object(gemini_llm, 'call', return_value="Tokyo has 14 million people.") as mock_call:
# Create agent with explicit LLM configuration
agent = Agent(
role="Research Assistant",
goal="Find population info",
backstory="You research populations.",
llm=gemini_llm,
)
task = Task(
description="Find Tokyo population",
expected_output="Population number",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
# Verify mock was called
assert mock_call.called
assert "14 million" in str(result)
def test_gemini_completion_call_arguments():
"""
Test that GeminiCompletion.call is invoked with correct arguments
"""
# Create LLM instance first
gemini_llm = LLM(model="google/gemini-2.0-flash-001")
# Mock the instance method
with patch.object(gemini_llm, 'call') as mock_call:
mock_call.return_value = "Task completed successfully."
agent = Agent(
role="Test Agent",
goal="Complete a simple task",
backstory="You are a test agent.",
llm=gemini_llm # Use same instance
)
task = Task(
description="Say hello world",
expected_output="Hello world",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff()
# Verify call was made
assert mock_call.called
# Check the arguments passed to the call method
call_args = mock_call.call_args
assert call_args is not None
# The first argument should be the messages
messages = call_args[0][0] # First positional argument
assert isinstance(messages, (str, list))
# Verify that the task description appears in the messages
if isinstance(messages, str):
assert "hello world" in messages.lower()
elif isinstance(messages, list):
message_content = str(messages).lower()
assert "hello world" in message_content
def test_multiple_gemini_calls_in_crew():
"""
Test that GeminiCompletion.call is invoked multiple times for multiple tasks
"""
# Create LLM instance first
gemini_llm = LLM(model="google/gemini-2.0-flash-001")
# Mock the instance method
with patch.object(gemini_llm, 'call') as mock_call:
mock_call.return_value = "Task completed."
agent = Agent(
role="Multi-task Agent",
goal="Complete multiple tasks",
backstory="You can handle multiple tasks.",
llm=gemini_llm # Use same instance
)
task1 = Task(
description="First task",
expected_output="First result",
agent=agent,
)
task2 = Task(
description="Second task",
expected_output="Second result",
agent=agent,
)
crew = Crew(
agents=[agent],
tasks=[task1, task2]
)
crew.kickoff()
# Verify multiple calls were made
assert mock_call.call_count >= 2 # At least one call per task
# Verify each call had proper arguments
for call in mock_call.call_args_list:
assert len(call[0]) > 0 # Has positional arguments
messages = call[0][0]
assert messages is not None
def test_gemini_completion_with_tools():
"""
Test that GeminiCompletion.call is invoked with tools when agent has tools
"""
from crewai.tools import tool
@tool
def sample_tool(query: str) -> str:
"""A sample tool for testing"""
return f"Tool result for: {query}"
# Create LLM instance first
gemini_llm = LLM(model="google/gemini-2.0-flash-001")
# Mock the instance method
with patch.object(gemini_llm, 'call') as mock_call:
mock_call.return_value = "Task completed with tools."
agent = Agent(
role="Tool User",
goal="Use tools to complete tasks",
backstory="You can use tools.",
llm=gemini_llm, # Use same instance
tools=[sample_tool]
)
task = Task(
description="Use the sample tool",
expected_output="Tool usage result",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
crew.kickoff()
assert mock_call.called
call_args = mock_call.call_args
call_kwargs = call_args[1] if len(call_args) > 1 else {}
if 'tools' in call_kwargs:
assert call_kwargs['tools'] is not None
assert len(call_kwargs['tools']) > 0
def test_gemini_raises_error_when_model_not_supported():
"""Test that GeminiCompletion raises ValueError when model not supported"""
# Mock the Google client to raise an error
with patch('crewai.llms.providers.gemini.completion.genai') as mock_genai:
mock_client = MagicMock()
mock_genai.Client.return_value = mock_client
from google.genai.errors import ClientError # type: ignore
mock_response = MagicMock()
mock_response.body_segments = [{
'error': {
'code': 404,
'message': 'models/model-doesnt-exist is not found for API version v1beta, or is not supported for generateContent.',
'status': 'NOT_FOUND'
}
}]
mock_response.status_code = 404
mock_client.models.generate_content.side_effect = ClientError(404, mock_response)
llm = LLM(model="google/model-doesnt-exist")
with pytest.raises(Exception): # Should raise some error for unsupported model
llm.call("Hello")
def test_gemini_vertex_ai_setup():
"""
Test that Vertex AI configuration is properly handled
"""
with patch.dict(os.environ, {
"GOOGLE_CLOUD_PROJECT": "test-project",
"GOOGLE_CLOUD_LOCATION": "us-west1"
}):
llm = LLM(
model="google/gemini-2.0-flash-001",
project="test-project",
location="us-west1"
)
from crewai.llms.providers.gemini.completion import GeminiCompletion
assert isinstance(llm, GeminiCompletion)
assert llm.project == "test-project"
assert llm.location == "us-west1"
def test_gemini_api_key_configuration():
"""
Test that API key configuration works for both GOOGLE_API_KEY and GEMINI_API_KEY
"""
# Test with GOOGLE_API_KEY
with patch.dict(os.environ, {"GOOGLE_API_KEY": "test-google-key"}):
llm = LLM(model="google/gemini-2.0-flash-001")
from crewai.llms.providers.gemini.completion import GeminiCompletion
assert isinstance(llm, GeminiCompletion)
assert llm.api_key == "test-google-key"
# Test with GEMINI_API_KEY
with patch.dict(os.environ, {"GEMINI_API_KEY": "test-gemini-key"}, clear=True):
llm = LLM(model="google/gemini-2.0-flash-001")
assert isinstance(llm, GeminiCompletion)
assert llm.api_key == "test-gemini-key"
def test_gemini_model_capabilities():
"""
Test that model capabilities are correctly identified
"""
# Test Gemini 2.0 model
llm_2_0 = LLM(model="google/gemini-2.0-flash-001")
from crewai.llms.providers.gemini.completion import GeminiCompletion
assert isinstance(llm_2_0, GeminiCompletion)
assert llm_2_0.is_gemini_2 == True
assert llm_2_0.supports_tools == True
# Test Gemini 1.5 model
llm_1_5 = LLM(model="google/gemini-1.5-pro")
assert isinstance(llm_1_5, GeminiCompletion)
assert llm_1_5.is_gemini_1_5 == True
assert llm_1_5.supports_tools == True
def test_gemini_generation_config():
"""
Test that generation config is properly prepared
"""
llm = LLM(
model="google/gemini-2.0-flash-001",
temperature=0.7,
top_p=0.9,
top_k=40,
max_output_tokens=1000
)
from crewai.llms.providers.gemini.completion import GeminiCompletion
assert isinstance(llm, GeminiCompletion)
# Test config preparation
config = llm._prepare_generation_config()
# Verify config has the expected parameters
assert hasattr(config, 'temperature') or 'temperature' in str(config)
assert hasattr(config, 'top_p') or 'top_p' in str(config)
assert hasattr(config, 'top_k') or 'top_k' in str(config)
assert hasattr(config, 'max_output_tokens') or 'max_output_tokens' in str(config)
def test_gemini_model_detection():
"""
Test that various Gemini model formats are properly detected
"""
# Test Gemini model naming patterns that actually work with provider detection
gemini_test_cases = [
"google/gemini-2.0-flash-001",
"gemini/gemini-2.0-flash-001",
"google/gemini-1.5-pro",
"gemini/gemini-1.5-flash"
]
for model_name in gemini_test_cases:
llm = LLM(model=model_name)
from crewai.llms.providers.gemini.completion import GeminiCompletion
assert isinstance(llm, GeminiCompletion), f"Failed for model: {model_name}"
def test_gemini_supports_stop_words():
"""
Test that Gemini models support stop sequences
"""
llm = LLM(model="google/gemini-2.0-flash-001")
assert llm.supports_stop_words() == True
def test_gemini_context_window_size():
"""
Test that Gemini models return correct context window sizes
"""
# Test Gemini 2.0 Flash
llm_2_0 = LLM(model="google/gemini-2.0-flash-001")
context_size_2_0 = llm_2_0.get_context_window_size()
assert context_size_2_0 > 500000 # Should be substantial (1M tokens)
# Test Gemini 1.5 Pro
llm_1_5 = LLM(model="google/gemini-1.5-pro")
context_size_1_5 = llm_1_5.get_context_window_size()
assert context_size_1_5 > 1000000 # Should be very large (2M tokens)
def test_gemini_message_formatting():
"""
Test that messages are properly formatted for Gemini API
"""
llm = LLM(model="google/gemini-2.0-flash-001")
# Test message formatting
test_messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hi there!"},
{"role": "user", "content": "How are you?"}
]
formatted_contents, system_instruction = llm._format_messages_for_gemini(test_messages)
# System message should be extracted
assert system_instruction == "You are a helpful assistant."
# Remaining messages should be Content objects
assert len(formatted_contents) >= 3 # Should have user, model, user messages
# First content should be user role
assert formatted_contents[0].role == "user"
# Second should be model (converted from assistant)
assert formatted_contents[1].role == "model"
def test_gemini_streaming_parameter():
"""
Test that streaming parameter is properly handled
"""
# Test non-streaming
llm_no_stream = LLM(model="google/gemini-2.0-flash-001", stream=False)
assert llm_no_stream.stream == False
# Test streaming
llm_stream = LLM(model="google/gemini-2.0-flash-001", stream=True)
assert llm_stream.stream == True
def test_gemini_tool_conversion():
"""
Test that tools are properly converted to Gemini format
"""
llm = LLM(model="google/gemini-2.0-flash-001")
# Mock tool in CrewAI format
crewai_tools = [{
"type": "function",
"function": {
"name": "test_tool",
"description": "A test tool",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string", "description": "Search query"}
},
"required": ["query"]
}
}
}]
# Test tool conversion
gemini_tools = llm._convert_tools_for_interference(crewai_tools)
assert len(gemini_tools) == 1
# Gemini tools are Tool objects with function_declarations
assert hasattr(gemini_tools[0], 'function_declarations')
assert len(gemini_tools[0].function_declarations) == 1
func_decl = gemini_tools[0].function_declarations[0]
assert func_decl.name == "test_tool"
assert func_decl.description == "A test tool"
def test_gemini_environment_variable_api_key():
"""
Test that Google API key is properly loaded from environment
"""
with patch.dict(os.environ, {"GOOGLE_API_KEY": "test-google-key"}):
llm = LLM(model="google/gemini-2.0-flash-001")
assert llm.client is not None
assert hasattr(llm.client, 'models')
assert llm.api_key == "test-google-key"
def test_gemini_token_usage_tracking():
"""
Test that token usage is properly tracked for Gemini responses
"""
llm = LLM(model="google/gemini-2.0-flash-001")
# Mock the Gemini response with usage information
with patch.object(llm.client.models, 'generate_content') as mock_generate:
mock_response = MagicMock()
mock_response.text = "test response"
mock_response.candidates = []
mock_response.usage_metadata = MagicMock(
prompt_token_count=50,
candidates_token_count=25,
total_token_count=75
)
mock_generate.return_value = mock_response
result = llm.call("Hello")
# Verify the response
assert result == "test response"
# Verify token usage was extracted
usage = llm._extract_token_usage(mock_response)
assert usage["prompt_token_count"] == 50
assert usage["candidates_token_count"] == 25
assert usage["total_token_count"] == 75
assert usage["total_tokens"] == 75
def test_gemini_stop_sequences_sync():
"""Test that stop and stop_sequences attributes stay synchronized."""
llm = LLM(model="google/gemini-2.0-flash-001")
# Test setting stop as a list
llm.stop = ["\nObservation:", "\nThought:"]
assert llm.stop_sequences == ["\nObservation:", "\nThought:"]
assert llm.stop == ["\nObservation:", "\nThought:"]
# Test setting stop as a string
llm.stop = "\nFinal Answer:"
assert llm.stop_sequences == ["\nFinal Answer:"]
assert llm.stop == ["\nFinal Answer:"]
# Test setting stop as None
llm.stop = None
assert llm.stop_sequences == []
assert llm.stop == []
def test_gemini_stop_sequences_sent_to_api():
"""Test that stop_sequences are properly sent to the Gemini API."""
llm = LLM(model="google/gemini-2.0-flash-001")
# Set stop sequences via the stop attribute (simulating CrewAgentExecutor)
llm.stop = ["\nObservation:", "\nThought:"]
# Patch the API call to capture parameters without making real call
with patch.object(llm.client.models, 'generate_content') as mock_generate:
mock_response = MagicMock()
mock_response.text = "Hello"
mock_response.candidates = []
mock_response.usage_metadata = MagicMock(
prompt_token_count=10,
candidates_token_count=5,
total_token_count=15
)
mock_generate.return_value = mock_response
llm.call("Say hello in one word")
# Verify stop_sequences were passed to the API in the config
call_kwargs = mock_generate.call_args[1]
assert "config" in call_kwargs
# The config object should have stop_sequences set
config = call_kwargs["config"]
# Check if the config has stop_sequences attribute
assert hasattr(config, 'stop_sequences') or 'stop_sequences' in config.__dict__
if hasattr(config, 'stop_sequences'):
assert config.stop_sequences == ["\nObservation:", "\nThought:"]