mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-16 12:28:30 +00:00
701 lines
23 KiB
Python
701 lines
23 KiB
Python
import os
|
|
import sys
|
|
import types
|
|
from unittest.mock import patch, MagicMock
|
|
import pytest
|
|
|
|
from crewai.llm import LLM
|
|
from crewai.crew import Crew
|
|
from crewai.agent import Agent
|
|
from crewai.task import Task
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def mock_anthropic_api_key():
|
|
"""Automatically mock ANTHROPIC_API_KEY for all tests in this module."""
|
|
with patch.dict(os.environ, {"ANTHROPIC_API_KEY": "test-key"}):
|
|
yield
|
|
|
|
|
|
def test_anthropic_completion_is_used_when_anthropic_provider():
|
|
"""
|
|
Test that AnthropicCompletion from completion.py is used when LLM uses provider 'anthropic'
|
|
"""
|
|
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
|
|
|
assert llm.__class__.__name__ == "AnthropicCompletion"
|
|
assert llm.provider == "anthropic"
|
|
assert llm.model == "claude-3-5-sonnet-20241022"
|
|
|
|
|
|
def test_anthropic_completion_is_used_when_claude_provider():
|
|
"""
|
|
Test that AnthropicCompletion is used when provider is 'claude'
|
|
"""
|
|
llm = LLM(model="claude/claude-3-5-sonnet-20241022")
|
|
|
|
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
|
|
assert isinstance(llm, AnthropicCompletion)
|
|
assert llm.provider == "claude"
|
|
assert llm.model == "claude-3-5-sonnet-20241022"
|
|
|
|
|
|
|
|
|
|
def test_anthropic_tool_use_conversation_flow():
|
|
"""
|
|
Test that the Anthropic completion properly handles tool use conversation flow
|
|
"""
|
|
from unittest.mock import Mock, patch
|
|
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
|
|
from anthropic.types.tool_use_block import ToolUseBlock
|
|
|
|
# Create AnthropicCompletion instance
|
|
completion = AnthropicCompletion(model="claude-3-5-sonnet-20241022")
|
|
|
|
# Mock tool function
|
|
def mock_weather_tool(location: str) -> str:
|
|
return f"The weather in {location} is sunny and 75°F"
|
|
|
|
available_functions = {"get_weather": mock_weather_tool}
|
|
|
|
# Mock the Anthropic client responses
|
|
with patch.object(completion.client.messages, 'create') as mock_create:
|
|
# Mock initial response with tool use - need to properly mock ToolUseBlock
|
|
mock_tool_use = Mock(spec=ToolUseBlock)
|
|
mock_tool_use.id = "tool_123"
|
|
mock_tool_use.name = "get_weather"
|
|
mock_tool_use.input = {"location": "San Francisco"}
|
|
|
|
mock_initial_response = Mock()
|
|
mock_initial_response.content = [mock_tool_use]
|
|
mock_initial_response.usage = Mock()
|
|
mock_initial_response.usage.input_tokens = 100
|
|
mock_initial_response.usage.output_tokens = 50
|
|
|
|
# Mock final response after tool result - properly mock text content
|
|
mock_text_block = Mock()
|
|
# Set the text attribute as a string, not another Mock
|
|
mock_text_block.configure_mock(text="Based on the weather data, it's a beautiful day in San Francisco with sunny skies and 75°F temperature.")
|
|
|
|
mock_final_response = Mock()
|
|
mock_final_response.content = [mock_text_block]
|
|
mock_final_response.usage = Mock()
|
|
mock_final_response.usage.input_tokens = 150
|
|
mock_final_response.usage.output_tokens = 75
|
|
|
|
# Configure mock to return different responses on successive calls
|
|
mock_create.side_effect = [mock_initial_response, mock_final_response]
|
|
|
|
# Test the call
|
|
messages = [{"role": "user", "content": "What's the weather like in San Francisco?"}]
|
|
result = completion.call(
|
|
messages=messages,
|
|
available_functions=available_functions
|
|
)
|
|
|
|
# Verify the result contains the final response
|
|
assert "beautiful day in San Francisco" in result
|
|
assert "sunny skies" in result
|
|
assert "75°F" in result
|
|
|
|
# Verify that two API calls were made (initial + follow-up)
|
|
assert mock_create.call_count == 2
|
|
|
|
# Verify the second call includes tool results
|
|
second_call_args = mock_create.call_args_list[1][1] # kwargs of second call
|
|
messages_in_second_call = second_call_args["messages"]
|
|
|
|
# Should have original user message + assistant tool use + user tool result
|
|
assert len(messages_in_second_call) == 3
|
|
assert messages_in_second_call[0]["role"] == "user"
|
|
assert messages_in_second_call[1]["role"] == "assistant"
|
|
assert messages_in_second_call[2]["role"] == "user"
|
|
|
|
# Verify tool result format
|
|
tool_result = messages_in_second_call[2]["content"][0]
|
|
assert tool_result["type"] == "tool_result"
|
|
assert tool_result["tool_use_id"] == "tool_123"
|
|
assert "sunny and 75°F" in tool_result["content"]
|
|
|
|
|
|
def test_anthropic_completion_module_is_imported():
|
|
"""
|
|
Test that the completion module is properly imported when using Anthropic provider
|
|
"""
|
|
module_name = "crewai.llms.providers.anthropic.completion"
|
|
|
|
# Remove module from cache if it exists
|
|
if module_name in sys.modules:
|
|
del sys.modules[module_name]
|
|
|
|
# Create LLM instance - this should trigger the import
|
|
LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
|
|
|
# Verify the module was imported
|
|
assert module_name in sys.modules
|
|
completion_mod = sys.modules[module_name]
|
|
assert isinstance(completion_mod, types.ModuleType)
|
|
|
|
# Verify the class exists in the module
|
|
assert hasattr(completion_mod, 'AnthropicCompletion')
|
|
|
|
|
|
def test_native_anthropic_raises_error_when_initialization_fails():
|
|
"""
|
|
Test that LLM raises ImportError when native Anthropic completion fails to initialize.
|
|
This ensures we don't silently fall back when there's a configuration issue.
|
|
"""
|
|
# Mock the _get_native_provider to return a failing class
|
|
with patch('crewai.llm.LLM._get_native_provider') as mock_get_provider:
|
|
|
|
class FailingCompletion:
|
|
def __init__(self, *args, **kwargs):
|
|
raise Exception("Native Anthropic SDK failed")
|
|
|
|
mock_get_provider.return_value = FailingCompletion
|
|
|
|
# This should raise ImportError, not fall back to LiteLLM
|
|
with pytest.raises(ImportError) as excinfo:
|
|
LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
|
|
|
assert "Error importing native provider" in str(excinfo.value)
|
|
assert "Native Anthropic SDK failed" in str(excinfo.value)
|
|
|
|
|
|
def test_anthropic_completion_initialization_parameters():
|
|
"""
|
|
Test that AnthropicCompletion is initialized with correct parameters
|
|
"""
|
|
llm = LLM(
|
|
model="anthropic/claude-3-5-sonnet-20241022",
|
|
temperature=0.7,
|
|
max_tokens=2000,
|
|
top_p=0.9,
|
|
api_key="test-key"
|
|
)
|
|
|
|
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
|
|
assert isinstance(llm, AnthropicCompletion)
|
|
assert llm.model == "claude-3-5-sonnet-20241022"
|
|
assert llm.temperature == 0.7
|
|
assert llm.max_tokens == 2000
|
|
assert llm.top_p == 0.9
|
|
|
|
|
|
def test_anthropic_specific_parameters():
|
|
"""
|
|
Test Anthropic-specific parameters like stop_sequences and streaming
|
|
"""
|
|
llm = LLM(
|
|
model="anthropic/claude-3-5-sonnet-20241022",
|
|
stop_sequences=["Human:", "Assistant:"],
|
|
stream=True,
|
|
max_retries=5,
|
|
timeout=60
|
|
)
|
|
|
|
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
|
|
assert isinstance(llm, AnthropicCompletion)
|
|
assert llm.stop_sequences == ["Human:", "Assistant:"]
|
|
assert llm.stream == True
|
|
assert llm.client.max_retries == 5
|
|
assert llm.client.timeout == 60
|
|
|
|
|
|
def test_anthropic_completion_call():
|
|
"""
|
|
Test that AnthropicCompletion call method works
|
|
"""
|
|
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
|
|
|
# Mock the call method on the instance
|
|
with patch.object(llm, 'call', return_value="Hello! I'm Claude, ready to help.") as mock_call:
|
|
result = llm.call("Hello, how are you?")
|
|
|
|
assert result == "Hello! I'm Claude, ready to help."
|
|
mock_call.assert_called_once_with("Hello, how are you?")
|
|
|
|
|
|
def test_anthropic_completion_called_during_crew_execution():
|
|
"""
|
|
Test that AnthropicCompletion.call is actually invoked when running a crew
|
|
"""
|
|
# Create the LLM instance first
|
|
anthropic_llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
|
|
|
# Mock the call method on the specific instance
|
|
with patch.object(anthropic_llm, 'call', return_value="Tokyo has 14 million people.") as mock_call:
|
|
|
|
# Create agent with explicit LLM configuration
|
|
agent = Agent(
|
|
role="Research Assistant",
|
|
goal="Find population info",
|
|
backstory="You research populations.",
|
|
llm=anthropic_llm,
|
|
)
|
|
|
|
task = Task(
|
|
description="Find Tokyo population",
|
|
expected_output="Population number",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(agents=[agent], tasks=[task])
|
|
result = crew.kickoff()
|
|
|
|
# Verify mock was called
|
|
assert mock_call.called
|
|
assert "14 million" in str(result)
|
|
|
|
|
|
def test_anthropic_completion_call_arguments():
|
|
"""
|
|
Test that AnthropicCompletion.call is invoked with correct arguments
|
|
"""
|
|
# Create LLM instance first
|
|
anthropic_llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
|
|
|
# Mock the instance method
|
|
with patch.object(anthropic_llm, 'call') as mock_call:
|
|
mock_call.return_value = "Task completed successfully."
|
|
|
|
agent = Agent(
|
|
role="Test Agent",
|
|
goal="Complete a simple task",
|
|
backstory="You are a test agent.",
|
|
llm=anthropic_llm # Use same instance
|
|
)
|
|
|
|
task = Task(
|
|
description="Say hello world",
|
|
expected_output="Hello world",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(agents=[agent], tasks=[task])
|
|
crew.kickoff()
|
|
|
|
# Verify call was made
|
|
assert mock_call.called
|
|
|
|
# Check the arguments passed to the call method
|
|
call_args = mock_call.call_args
|
|
assert call_args is not None
|
|
|
|
# The first argument should be the messages
|
|
messages = call_args[0][0] # First positional argument
|
|
assert isinstance(messages, (str, list))
|
|
|
|
# Verify that the task description appears in the messages
|
|
if isinstance(messages, str):
|
|
assert "hello world" in messages.lower()
|
|
elif isinstance(messages, list):
|
|
message_content = str(messages).lower()
|
|
assert "hello world" in message_content
|
|
|
|
|
|
def test_multiple_anthropic_calls_in_crew():
|
|
"""
|
|
Test that AnthropicCompletion.call is invoked multiple times for multiple tasks
|
|
"""
|
|
# Create LLM instance first
|
|
anthropic_llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
|
|
|
# Mock the instance method
|
|
with patch.object(anthropic_llm, 'call') as mock_call:
|
|
mock_call.return_value = "Task completed."
|
|
|
|
agent = Agent(
|
|
role="Multi-task Agent",
|
|
goal="Complete multiple tasks",
|
|
backstory="You can handle multiple tasks.",
|
|
llm=anthropic_llm # Use same instance
|
|
)
|
|
|
|
task1 = Task(
|
|
description="First task",
|
|
expected_output="First result",
|
|
agent=agent,
|
|
)
|
|
|
|
task2 = Task(
|
|
description="Second task",
|
|
expected_output="Second result",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(
|
|
agents=[agent],
|
|
tasks=[task1, task2]
|
|
)
|
|
crew.kickoff()
|
|
|
|
# Verify multiple calls were made
|
|
assert mock_call.call_count >= 2 # At least one call per task
|
|
|
|
# Verify each call had proper arguments
|
|
for call in mock_call.call_args_list:
|
|
assert len(call[0]) > 0 # Has positional arguments
|
|
messages = call[0][0]
|
|
assert messages is not None
|
|
|
|
|
|
def test_anthropic_completion_with_tools():
|
|
"""
|
|
Test that AnthropicCompletion.call is invoked with tools when agent has tools
|
|
"""
|
|
from crewai.tools import tool
|
|
|
|
@tool
|
|
def sample_tool(query: str) -> str:
|
|
"""A sample tool for testing"""
|
|
return f"Tool result for: {query}"
|
|
|
|
# Create LLM instance first
|
|
anthropic_llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
|
|
|
# Mock the instance method
|
|
with patch.object(anthropic_llm, 'call') as mock_call:
|
|
mock_call.return_value = "Task completed with tools."
|
|
|
|
agent = Agent(
|
|
role="Tool User",
|
|
goal="Use tools to complete tasks",
|
|
backstory="You can use tools.",
|
|
llm=anthropic_llm, # Use same instance
|
|
tools=[sample_tool]
|
|
)
|
|
|
|
task = Task(
|
|
description="Use the sample tool",
|
|
expected_output="Tool usage result",
|
|
agent=agent,
|
|
)
|
|
|
|
crew = Crew(agents=[agent], tasks=[task])
|
|
crew.kickoff()
|
|
|
|
assert mock_call.called
|
|
|
|
call_args = mock_call.call_args
|
|
call_kwargs = call_args[1] if len(call_args) > 1 else {}
|
|
|
|
if 'tools' in call_kwargs:
|
|
assert call_kwargs['tools'] is not None
|
|
assert len(call_kwargs['tools']) > 0
|
|
|
|
|
|
def test_anthropic_raises_error_when_model_not_supported():
|
|
"""Test that AnthropicCompletion raises ValueError when model not supported"""
|
|
|
|
# Mock the Anthropic client to raise an error
|
|
with patch('crewai.llms.providers.anthropic.completion.Anthropic') as mock_anthropic_class:
|
|
mock_client = MagicMock()
|
|
mock_anthropic_class.return_value = mock_client
|
|
|
|
# Mock the error that Anthropic would raise for unsupported models
|
|
from anthropic import NotFoundError
|
|
mock_client.messages.create.side_effect = NotFoundError(
|
|
message="The model `model-doesnt-exist` does not exist",
|
|
response=MagicMock(),
|
|
body={}
|
|
)
|
|
|
|
llm = LLM(model="anthropic/model-doesnt-exist")
|
|
|
|
with pytest.raises(Exception): # Should raise some error for unsupported model
|
|
llm.call("Hello")
|
|
|
|
|
|
def test_anthropic_client_params_setup():
|
|
"""
|
|
Test that client_params are properly merged with default client parameters
|
|
"""
|
|
# Use only valid Anthropic client parameters
|
|
custom_client_params = {
|
|
"default_headers": {"X-Custom-Header": "test-value"},
|
|
}
|
|
|
|
with patch.dict(os.environ, {"ANTHROPIC_API_KEY": "test-key"}):
|
|
llm = LLM(
|
|
model="anthropic/claude-3-5-sonnet-20241022",
|
|
api_key="test-key",
|
|
base_url="https://custom-api.com",
|
|
timeout=45,
|
|
max_retries=5,
|
|
client_params=custom_client_params
|
|
)
|
|
|
|
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
|
|
assert isinstance(llm, AnthropicCompletion)
|
|
|
|
assert llm.client_params == custom_client_params
|
|
|
|
merged_params = llm._get_client_params()
|
|
|
|
assert merged_params["api_key"] == "test-key"
|
|
assert merged_params["base_url"] == "https://custom-api.com"
|
|
assert merged_params["timeout"] == 45
|
|
assert merged_params["max_retries"] == 5
|
|
|
|
assert merged_params["default_headers"] == {"X-Custom-Header": "test-value"}
|
|
|
|
|
|
def test_anthropic_client_params_override_defaults():
|
|
"""
|
|
Test that client_params can override default client parameters
|
|
"""
|
|
override_client_params = {
|
|
"timeout": 120, # Override the timeout parameter
|
|
"max_retries": 10, # Override the max_retries parameter
|
|
"default_headers": {"X-Override": "true"} # Valid custom parameter
|
|
}
|
|
|
|
with patch.dict(os.environ, {"ANTHROPIC_API_KEY": "test-key"}):
|
|
llm = LLM(
|
|
model="anthropic/claude-3-5-sonnet-20241022",
|
|
api_key="test-key",
|
|
timeout=30,
|
|
max_retries=3,
|
|
client_params=override_client_params
|
|
)
|
|
|
|
# Verify this is actually AnthropicCompletion, not LiteLLM fallback
|
|
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
|
|
assert isinstance(llm, AnthropicCompletion)
|
|
|
|
merged_params = llm._get_client_params()
|
|
|
|
# client_params should override the individual parameters
|
|
assert merged_params["timeout"] == 120
|
|
assert merged_params["max_retries"] == 10
|
|
assert merged_params["default_headers"] == {"X-Override": "true"}
|
|
|
|
|
|
def test_anthropic_client_params_none():
|
|
"""
|
|
Test that client_params=None works correctly (no additional parameters)
|
|
"""
|
|
with patch.dict(os.environ, {"ANTHROPIC_API_KEY": "test-key"}):
|
|
llm = LLM(
|
|
model="anthropic/claude-3-5-sonnet-20241022",
|
|
api_key="test-key",
|
|
base_url="https://api.anthropic.com",
|
|
timeout=60,
|
|
max_retries=2,
|
|
client_params=None
|
|
)
|
|
|
|
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
|
|
assert isinstance(llm, AnthropicCompletion)
|
|
|
|
assert llm.client_params is None
|
|
|
|
merged_params = llm._get_client_params()
|
|
|
|
expected_keys = {"api_key", "base_url", "timeout", "max_retries"}
|
|
assert set(merged_params.keys()) == expected_keys
|
|
|
|
# Fixed assertions - all should be inside the with block and use correct values
|
|
assert merged_params["api_key"] == "test-key" # Not "test-anthropic-key"
|
|
assert merged_params["base_url"] == "https://api.anthropic.com"
|
|
assert merged_params["timeout"] == 60
|
|
assert merged_params["max_retries"] == 2
|
|
|
|
|
|
def test_anthropic_client_params_empty_dict():
|
|
"""
|
|
Test that client_params={} works correctly (empty additional parameters)
|
|
"""
|
|
with patch.dict(os.environ, {"ANTHROPIC_API_KEY": "test-key"}):
|
|
llm = LLM(
|
|
model="anthropic/claude-3-5-sonnet-20241022",
|
|
api_key="test-key",
|
|
client_params={}
|
|
)
|
|
|
|
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
|
|
assert isinstance(llm, AnthropicCompletion)
|
|
|
|
assert llm.client_params == {}
|
|
|
|
merged_params = llm._get_client_params()
|
|
|
|
assert "api_key" in merged_params
|
|
assert merged_params["api_key"] == "test-key"
|
|
|
|
|
|
def test_anthropic_model_detection():
|
|
"""
|
|
Test that various Anthropic model formats are properly detected
|
|
"""
|
|
# Test Anthropic model naming patterns that actually work with provider detection
|
|
anthropic_test_cases = [
|
|
"anthropic/claude-3-5-sonnet-20241022",
|
|
"claude/claude-3-5-sonnet-20241022"
|
|
]
|
|
|
|
for model_name in anthropic_test_cases:
|
|
llm = LLM(model=model_name)
|
|
from crewai.llms.providers.anthropic.completion import AnthropicCompletion
|
|
assert isinstance(llm, AnthropicCompletion), f"Failed for model: {model_name}"
|
|
|
|
|
|
def test_anthropic_supports_stop_words():
|
|
"""
|
|
Test that Anthropic models support stop sequences
|
|
"""
|
|
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
|
assert llm.supports_stop_words() == True
|
|
|
|
|
|
def test_anthropic_context_window_size():
|
|
"""
|
|
Test that Anthropic models return correct context window sizes
|
|
"""
|
|
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
|
context_size = llm.get_context_window_size()
|
|
|
|
# Should return a reasonable context window size (Claude 3.5 has 200k tokens)
|
|
assert context_size > 100000 # Should be substantial
|
|
assert context_size <= 200000 # But not exceed the actual limit
|
|
|
|
|
|
def test_anthropic_message_formatting():
|
|
"""
|
|
Test that messages are properly formatted for Anthropic API
|
|
"""
|
|
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
|
|
|
# Test message formatting
|
|
test_messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{"role": "user", "content": "Hello"},
|
|
{"role": "assistant", "content": "Hi there!"},
|
|
{"role": "user", "content": "How are you?"}
|
|
]
|
|
|
|
formatted_messages, system_message = llm._format_messages_for_anthropic(test_messages)
|
|
|
|
# System message should be extracted
|
|
assert system_message == "You are a helpful assistant."
|
|
|
|
# Remaining messages should start with user
|
|
assert formatted_messages[0]["role"] == "user"
|
|
assert len(formatted_messages) >= 3 # Should have user, assistant, user messages
|
|
|
|
|
|
def test_anthropic_streaming_parameter():
|
|
"""
|
|
Test that streaming parameter is properly handled
|
|
"""
|
|
# Test non-streaming
|
|
llm_no_stream = LLM(model="anthropic/claude-3-5-sonnet-20241022", stream=False)
|
|
assert llm_no_stream.stream == False
|
|
|
|
# Test streaming
|
|
llm_stream = LLM(model="anthropic/claude-3-5-sonnet-20241022", stream=True)
|
|
assert llm_stream.stream == True
|
|
|
|
|
|
def test_anthropic_tool_conversion():
|
|
"""
|
|
Test that tools are properly converted to Anthropic format
|
|
"""
|
|
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
|
|
|
# Mock tool in CrewAI format
|
|
crewai_tools = [{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "test_tool",
|
|
"description": "A test tool",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"query": {"type": "string", "description": "Search query"}
|
|
},
|
|
"required": ["query"]
|
|
}
|
|
}
|
|
}]
|
|
|
|
# Test tool conversion
|
|
anthropic_tools = llm._convert_tools_for_interference(crewai_tools)
|
|
|
|
assert len(anthropic_tools) == 1
|
|
assert anthropic_tools[0]["name"] == "test_tool"
|
|
assert anthropic_tools[0]["description"] == "A test tool"
|
|
assert "input_schema" in anthropic_tools[0]
|
|
|
|
|
|
def test_anthropic_environment_variable_api_key():
|
|
"""
|
|
Test that Anthropic API key is properly loaded from environment
|
|
"""
|
|
with patch.dict(os.environ, {"ANTHROPIC_API_KEY": "test-anthropic-key"}):
|
|
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
|
|
|
assert llm.client is not None
|
|
assert hasattr(llm.client, 'messages')
|
|
|
|
|
|
def test_anthropic_token_usage_tracking():
|
|
"""
|
|
Test that token usage is properly tracked for Anthropic responses
|
|
"""
|
|
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
|
|
|
# Mock the Anthropic response with usage information
|
|
with patch.object(llm.client.messages, 'create') as mock_create:
|
|
mock_response = MagicMock()
|
|
mock_response.content = [MagicMock(text="test response")]
|
|
mock_response.usage = MagicMock(input_tokens=50, output_tokens=25)
|
|
mock_create.return_value = mock_response
|
|
|
|
result = llm.call("Hello")
|
|
|
|
# Verify the response
|
|
assert result == "test response"
|
|
|
|
# Verify token usage was extracted
|
|
usage = llm._extract_anthropic_token_usage(mock_response)
|
|
assert usage["input_tokens"] == 50
|
|
assert usage["output_tokens"] == 25
|
|
assert usage["total_tokens"] == 75
|
|
|
|
|
|
def test_anthropic_stop_sequences_sync():
|
|
"""Test that stop and stop_sequences attributes stay synchronized."""
|
|
llm = LLM(model="anthropic/claude-3-5-sonnet-20241022")
|
|
|
|
# Test setting stop as a list
|
|
llm.stop = ["\nObservation:", "\nThought:"]
|
|
assert llm.stop_sequences == ["\nObservation:", "\nThought:"]
|
|
assert llm.stop == ["\nObservation:", "\nThought:"]
|
|
|
|
# Test setting stop as a string
|
|
llm.stop = "\nFinal Answer:"
|
|
assert llm.stop_sequences == ["\nFinal Answer:"]
|
|
assert llm.stop == ["\nFinal Answer:"]
|
|
|
|
# Test setting stop as None
|
|
llm.stop = None
|
|
assert llm.stop_sequences == []
|
|
assert llm.stop == []
|
|
|
|
|
|
@pytest.mark.vcr(filter_headers=["authorization", "x-api-key"])
|
|
def test_anthropic_stop_sequences_sent_to_api():
|
|
"""Test that stop_sequences are properly sent to the Anthropic API."""
|
|
llm = LLM(model="anthropic/claude-3-5-haiku-20241022")
|
|
|
|
llm.stop = ["\nObservation:", "\nThought:"]
|
|
|
|
result = llm.call("Say hello in one word")
|
|
|
|
assert result is not None
|
|
assert isinstance(result, str)
|
|
assert len(result) > 0
|