Files
crewAI/docs/en/tools/file-document/ocrtool.mdx
Tony Kipkemboi 1a1bb0ca3d docs: Docs updates (#3459)
* docs(cli): document device-code login and config reset guidance; renumber sections

* docs(cli): fix duplicate numbering (renumber Login/API Keys/Configuration sections)

* docs: Fix webhook documentation to include meta dict in all webhook payloads

- Add note explaining that meta objects from kickoff requests are included in all webhook payloads
- Update webhook examples to show proper payload structure including meta field
- Fix webhook examples to match actual API implementation
- Apply changes to English, Korean, and Portuguese documentation

Resolves the documentation gap where meta dict passing to webhooks was not documented despite being implemented in the API.

* WIP: CrewAI docs theme, changelog, GEO, localization

* docs(cli): fix merge markers; ensure mode: "wide"; convert ASCII tables to Markdown (en/pt-BR/ko)

* docs: add group icons across locales; split Automation/Integrations; update tools overviews and links
2025-09-05 17:40:11 -04:00

91 lines
1.8 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
---
title: OCR Tool
description: The `OCRTool` extracts text from local images or image URLs using an LLM with vision.
icon: image
mode: "wide"
---
# `OCRTool`
## Description
Extract text from images (local path or URL). Uses a visioncapable LLM via CrewAIs LLM interface.
## Installation
No extra install beyond `crewai-tools`. Ensure your selected LLM supports vision.
## Parameters
### Run Parameters
- `image_path_url` (str, required): Local image path or HTTP(S) URL.
## Examples
### Direct usage
```python Code
from crewai_tools import OCRTool
print(OCRTool().run(image_path_url="/tmp/receipt.png"))
```
### With an agent
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import OCRTool
ocr = OCRTool()
agent = Agent(
role="OCR",
goal="Extract text",
tools=[ocr],
)
task = Task(
description="Extract text from https://example.com/invoice.jpg",
expected_output="All detected text in plain text",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
```
## Notes
- Ensure the selected LLM supports image inputs.
- For large images, consider downscaling to reduce token usage.
- You can pass a specific LLM instance to the tool (e.g., `LLM(model="gpt-4o")`) if needed, matching the README guidance.
## Example
```python Code
from crewai import Agent, Task, Crew
from crewai_tools import OCRTool
tool = OCRTool()
agent = Agent(
role="OCR Specialist",
goal="Extract text from images",
backstory="Visionenabled analyst",
tools=[tool],
verbose=True,
)
task = Task(
description="Extract text from https://example.com/receipt.png",
expected_output="All detected text in plain text",
agent=agent,
)
crew = Crew(agents=[agent], tasks=[task])
result = crew.kickoff()
```