mirror of
https://github.com/crewAIInc/crewAI.git
synced 2025-12-28 10:18:32 +00:00
* fixing identation for AgentTools * updating gitignore to exclude quick test script * startingprompt translation * supporting individual task output * adding agent to task output * cutting new version * Updating README example
182 lines
6.0 KiB
Python
182 lines
6.0 KiB
Python
import uuid
|
|
from typing import Any, List, Optional
|
|
|
|
from langchain.agents.format_scratchpad import format_log_to_str
|
|
from langchain.chat_models import ChatOpenAI
|
|
from langchain.memory import ConversationSummaryMemory
|
|
from langchain.tools.render import render_text_description
|
|
from langchain_core.runnables.config import RunnableConfig
|
|
from pydantic import (
|
|
UUID4,
|
|
BaseModel,
|
|
ConfigDict,
|
|
Field,
|
|
InstanceOf,
|
|
field_validator,
|
|
model_validator,
|
|
)
|
|
from pydantic_core import PydanticCustomError
|
|
|
|
from crewai.agents import (
|
|
CacheHandler,
|
|
CrewAgentExecutor,
|
|
CrewAgentOutputParser,
|
|
ToolsHandler,
|
|
)
|
|
from crewai.prompts import Prompts
|
|
|
|
|
|
class Agent(BaseModel):
|
|
"""Represents an agent in a system.
|
|
|
|
Each agent has a role, a goal, a backstory, and an optional language model (llm).
|
|
The agent can also have memory, can operate in verbose mode, and can delegate tasks to other agents.
|
|
|
|
Attributes:
|
|
agent_executor: An instance of the CrewAgentExecutor class.
|
|
role: The role of the agent.
|
|
goal: The objective of the agent.
|
|
backstory: The backstory of the agent.
|
|
llm: The language model that will run the agent.
|
|
memory: Whether the agent should have memory or not.
|
|
verbose: Whether the agent execution should be in verbose mode.
|
|
allow_delegation: Whether the agent is allowed to delegate tasks to other agents.
|
|
"""
|
|
|
|
__hash__ = object.__hash__
|
|
model_config = ConfigDict(arbitrary_types_allowed=True)
|
|
id: UUID4 = Field(
|
|
default_factory=uuid.uuid4,
|
|
frozen=True,
|
|
description="Unique identifier for the object, not set by user.",
|
|
)
|
|
role: str = Field(description="Role of the agent")
|
|
goal: str = Field(description="Objective of the agent")
|
|
backstory: str = Field(description="Backstory of the agent")
|
|
llm: Optional[Any] = Field(
|
|
default_factory=lambda: ChatOpenAI(
|
|
temperature=0.7,
|
|
model_name="gpt-4",
|
|
),
|
|
description="Language model that will run the agent.",
|
|
)
|
|
memory: bool = Field(
|
|
default=True, description="Whether the agent should have memory or not"
|
|
)
|
|
verbose: bool = Field(
|
|
default=False, description="Verbose mode for the Agent Execution"
|
|
)
|
|
allow_delegation: bool = Field(
|
|
default=True, description="Allow delegation of tasks to agents"
|
|
)
|
|
tools: List[Any] = Field(
|
|
default_factory=list, description="Tools at agents disposal"
|
|
)
|
|
agent_executor: Optional[InstanceOf[CrewAgentExecutor]] = Field(
|
|
default=None, description="An instance of the CrewAgentExecutor class."
|
|
)
|
|
tools_handler: Optional[InstanceOf[ToolsHandler]] = Field(
|
|
default=None, description="An instance of the ToolsHandler class."
|
|
)
|
|
cache_handler: Optional[InstanceOf[CacheHandler]] = Field(
|
|
default=CacheHandler(), description="An instance of the CacheHandler class."
|
|
)
|
|
|
|
@field_validator("id", mode="before")
|
|
@classmethod
|
|
def _deny_user_set_id(cls, v: Optional[UUID4]) -> None:
|
|
if v:
|
|
raise PydanticCustomError(
|
|
"may_not_set_field", "This field is not to be set by the user.", {}
|
|
)
|
|
|
|
@model_validator(mode="after")
|
|
def check_agent_executor(self) -> "Agent":
|
|
if not self.agent_executor:
|
|
self.set_cache_handler(self.cache_handler)
|
|
return self
|
|
|
|
def execute_task(
|
|
self, task: str, context: str = None, tools: List[Any] = None
|
|
) -> str:
|
|
"""Execute a task with the agent.
|
|
|
|
Args:
|
|
task: Task to execute.
|
|
context: Context to execute the task in.
|
|
tools: Tools to use for the task.
|
|
|
|
Returns:
|
|
Output of the agent
|
|
"""
|
|
if context:
|
|
task = "\n".join(
|
|
[task, "\nThis is the context you are working with:", context]
|
|
)
|
|
|
|
tools = tools or self.tools
|
|
self.agent_executor.tools = tools
|
|
|
|
return self.agent_executor.invoke(
|
|
{
|
|
"input": task,
|
|
"tool_names": self.__tools_names(tools),
|
|
"tools": render_text_description(tools),
|
|
},
|
|
RunnableConfig(callbacks=[self.tools_handler]),
|
|
)["output"]
|
|
|
|
def set_cache_handler(self, cache_handler) -> None:
|
|
self.cache_handler = cache_handler
|
|
self.tools_handler = ToolsHandler(cache=self.cache_handler)
|
|
self.__create_agent_executor()
|
|
|
|
def __create_agent_executor(self) -> CrewAgentExecutor:
|
|
"""Create an agent executor for the agent.
|
|
|
|
Returns:
|
|
An instance of the CrewAgentExecutor class.
|
|
"""
|
|
agent_args = {
|
|
"input": lambda x: x["input"],
|
|
"tools": lambda x: x["tools"],
|
|
"tool_names": lambda x: x["tool_names"],
|
|
"agent_scratchpad": lambda x: format_log_to_str(x["intermediate_steps"]),
|
|
}
|
|
executor_args = {
|
|
"tools": self.tools,
|
|
"verbose": self.verbose,
|
|
"handle_parsing_errors": True,
|
|
}
|
|
|
|
if self.memory:
|
|
summary_memory = ConversationSummaryMemory(
|
|
llm=self.llm, memory_key="chat_history", input_key="input"
|
|
)
|
|
executor_args["memory"] = summary_memory
|
|
agent_args["chat_history"] = lambda x: x["chat_history"]
|
|
prompt = Prompts().task_execution_with_memory()
|
|
else:
|
|
prompt = Prompts().task_execution()
|
|
|
|
execution_prompt = prompt.partial(
|
|
goal=self.goal,
|
|
role=self.role,
|
|
backstory=self.backstory,
|
|
)
|
|
|
|
bind = self.llm.bind(stop=["\nObservation"])
|
|
inner_agent = (
|
|
agent_args
|
|
| execution_prompt
|
|
| bind
|
|
| CrewAgentOutputParser(
|
|
tools_handler=self.tools_handler, cache=self.cache_handler
|
|
)
|
|
)
|
|
self.agent_executor = CrewAgentExecutor(agent=inner_agent, **executor_args)
|
|
|
|
@staticmethod
|
|
def __tools_names(tools) -> str:
|
|
return ", ".join([t.name for t in tools])
|