Files
crewAI/src/crewai/agent.py
Devin AI 39ea952acd Implement LLM generations, logprobs, and XML parsing features
- Add support for n generations and logprobs parameters in LLM class
- Extend Agent class to accept LLM generation parameters (llm_n, llm_logprobs, llm_top_logprobs)
- Add return_full_completion parameter to access complete LLM response metadata
- Implement XML parser utility for extracting content from tags like <thinking>
- Add completion metadata support to TaskOutput and LiteAgentOutput classes
- Add comprehensive tests and examples demonstrating new functionality
- Maintain full backward compatibility with existing code

Addresses issue #3052: How to obtain n generations or generations in different tags

Co-Authored-By: João <joao@crewai.com>
2025-06-24 05:14:22 +00:00

856 lines
32 KiB
Python

import shutil
import subprocess
from typing import Any, Callable, Dict, List, Literal, Optional, Sequence, Tuple, Type, Union
from pydantic import Field, InstanceOf, PrivateAttr, model_validator
from crewai.agents import CacheHandler
from crewai.agents.agent_builder.base_agent import BaseAgent
from crewai.agents.crew_agent_executor import CrewAgentExecutor
from crewai.knowledge.knowledge import Knowledge
from crewai.knowledge.source.base_knowledge_source import BaseKnowledgeSource
from crewai.knowledge.utils.knowledge_utils import extract_knowledge_context
from crewai.lite_agent import LiteAgent, LiteAgentOutput
from crewai.llm import BaseLLM
from crewai.memory.contextual.contextual_memory import ContextualMemory
from crewai.security import Fingerprint
from crewai.task import Task
from crewai.tools import BaseTool
from crewai.tools.agent_tools.agent_tools import AgentTools
from crewai.utilities import Converter, Prompts
from crewai.utilities.agent_utils import (
get_tool_names,
load_agent_from_repository,
parse_tools,
render_text_description_and_args,
)
from crewai.utilities.constants import TRAINED_AGENTS_DATA_FILE, TRAINING_DATA_FILE
from crewai.utilities.converter import generate_model_description
from crewai.utilities.events.agent_events import (
AgentExecutionCompletedEvent,
AgentExecutionErrorEvent,
AgentExecutionStartedEvent,
)
from crewai.utilities.events.crewai_event_bus import crewai_event_bus
from crewai.utilities.events.knowledge_events import (
KnowledgeQueryCompletedEvent,
KnowledgeQueryFailedEvent,
KnowledgeQueryStartedEvent,
KnowledgeRetrievalCompletedEvent,
KnowledgeRetrievalStartedEvent,
KnowledgeSearchQueryFailedEvent,
)
from crewai.utilities.llm_utils import create_llm
from crewai.utilities.token_counter_callback import TokenCalcHandler
from crewai.utilities.training_handler import CrewTrainingHandler
class Agent(BaseAgent):
"""Represents an agent in a system.
Each agent has a role, a goal, a backstory, and an optional language model (llm).
The agent can also have memory, can operate in verbose mode, and can delegate tasks to other agents.
Attributes:
agent_executor: An instance of the CrewAgentExecutor class.
role: The role of the agent.
goal: The objective of the agent.
backstory: The backstory of the agent.
knowledge: The knowledge base of the agent.
config: Dict representation of agent configuration.
llm: The language model that will run the agent.
function_calling_llm: The language model that will handle the tool calling for this agent, it overrides the crew function_calling_llm.
max_iter: Maximum number of iterations for an agent to execute a task.
max_rpm: Maximum number of requests per minute for the agent execution to be respected.
verbose: Whether the agent execution should be in verbose mode.
allow_delegation: Whether the agent is allowed to delegate tasks to other agents.
tools: Tools at agents disposal
step_callback: Callback to be executed after each step of the agent execution.
knowledge_sources: Knowledge sources for the agent.
embedder: Embedder configuration for the agent.
"""
_times_executed: int = PrivateAttr(default=0)
max_execution_time: Optional[int] = Field(
default=None,
description="Maximum execution time for an agent to execute a task",
)
agent_ops_agent_name: str = None # type: ignore # Incompatible types in assignment (expression has type "None", variable has type "str")
agent_ops_agent_id: str = None # type: ignore # Incompatible types in assignment (expression has type "None", variable has type "str")
step_callback: Optional[Any] = Field(
default=None,
description="Callback to be executed after each step of the agent execution.",
)
use_system_prompt: Optional[bool] = Field(
default=True,
description="Use system prompt for the agent.",
)
llm: Union[str, InstanceOf[BaseLLM], Any] = Field(
description="Language model that will run the agent.", default=None
)
llm_n: Optional[int] = Field(
default=None,
description="Number of generations to request from the LLM.",
)
llm_logprobs: Optional[int] = Field(
default=None,
description="Number of log probabilities to return from the LLM.",
)
llm_top_logprobs: Optional[int] = Field(
default=None,
description="Number of top log probabilities to return from the LLM.",
)
return_completion_metadata: bool = Field(
default=False,
description="Whether to return full completion metadata including generations and logprobs.",
)
function_calling_llm: Optional[Union[str, InstanceOf[BaseLLM], Any]] = Field(
description="Language model that will run the agent.", default=None
)
system_template: Optional[str] = Field(
default=None, description="System format for the agent."
)
prompt_template: Optional[str] = Field(
default=None, description="Prompt format for the agent."
)
response_template: Optional[str] = Field(
default=None, description="Response format for the agent."
)
allow_code_execution: Optional[bool] = Field(
default=False, description="Enable code execution for the agent."
)
respect_context_window: bool = Field(
default=True,
description="Keep messages under the context window size by summarizing content.",
)
max_retry_limit: int = Field(
default=2,
description="Maximum number of retries for an agent to execute a task when an error occurs.",
)
multimodal: bool = Field(
default=False,
description="Whether the agent is multimodal.",
)
inject_date: bool = Field(
default=False,
description="Whether to automatically inject the current date into tasks.",
)
date_format: str = Field(
default="%Y-%m-%d",
description="Format string for date when inject_date is enabled.",
)
code_execution_mode: Literal["safe", "unsafe"] = Field(
default="safe",
description="Mode for code execution: 'safe' (using Docker) or 'unsafe' (direct execution).",
)
reasoning: bool = Field(
default=False,
description="Whether the agent should reflect and create a plan before executing a task.",
)
max_reasoning_attempts: Optional[int] = Field(
default=None,
description="Maximum number of reasoning attempts before executing the task. If None, will try until ready.",
)
embedder: Optional[Dict[str, Any]] = Field(
default=None,
description="Embedder configuration for the agent.",
)
agent_knowledge_context: Optional[str] = Field(
default=None,
description="Knowledge context for the agent.",
)
crew_knowledge_context: Optional[str] = Field(
default=None,
description="Knowledge context for the crew.",
)
knowledge_search_query: Optional[str] = Field(
default=None,
description="Knowledge search query for the agent dynamically generated by the agent.",
)
from_repository: Optional[str] = Field(
default=None,
description="The Agent's role to be used from your repository.",
)
guardrail: Optional[Union[Callable[[Any], Tuple[bool, Any]], str]] = Field(
default=None,
description="Function or string description of a guardrail to validate agent output"
)
guardrail_max_retries: int = Field(
default=3, description="Maximum number of retries when guardrail fails"
)
@model_validator(mode="before")
def validate_from_repository(cls, v):
if v is not None and (from_repository := v.get("from_repository")):
return load_agent_from_repository(from_repository) | v
return v
@model_validator(mode="after")
def post_init_setup(self):
self.agent_ops_agent_name = self.role
self.llm = create_llm(self.llm)
if self.function_calling_llm and not isinstance(
self.function_calling_llm, BaseLLM
):
self.function_calling_llm = create_llm(self.function_calling_llm)
if hasattr(self.llm, 'n') and self.llm_n is not None:
self.llm.n = self.llm_n
if hasattr(self.llm, 'logprobs') and self.llm_logprobs is not None:
self.llm.logprobs = self.llm_logprobs
if hasattr(self.llm, 'top_logprobs') and self.llm_top_logprobs is not None:
self.llm.top_logprobs = self.llm_top_logprobs
if hasattr(self.llm, 'return_full_completion'):
self.llm.return_full_completion = self.return_completion_metadata
if not self.agent_executor:
self._setup_agent_executor()
if self.allow_code_execution:
self._validate_docker_installation()
return self
def _setup_agent_executor(self):
if not self.cache_handler:
self.cache_handler = CacheHandler()
self.set_cache_handler(self.cache_handler)
def set_knowledge(self, crew_embedder: Optional[Dict[str, Any]] = None):
try:
if self.embedder is None and crew_embedder:
self.embedder = crew_embedder
if self.knowledge_sources:
if isinstance(self.knowledge_sources, list) and all(
isinstance(k, BaseKnowledgeSource) for k in self.knowledge_sources
):
self.knowledge = Knowledge(
sources=self.knowledge_sources,
embedder=self.embedder,
collection_name=self.role,
storage=self.knowledge_storage or None,
)
self.knowledge.add_sources()
except (TypeError, ValueError) as e:
raise ValueError(f"Invalid Knowledge Configuration: {str(e)}")
def _is_any_available_memory(self) -> bool:
"""Check if any memory is available."""
if not self.crew:
return False
memory_attributes = [
"memory",
"memory_config",
"_short_term_memory",
"_long_term_memory",
"_entity_memory",
"_user_memory",
"_external_memory",
]
return any(getattr(self.crew, attr) for attr in memory_attributes)
def execute_task(
self,
task: Task,
context: Optional[str] = None,
tools: Optional[List[BaseTool]] = None,
) -> str:
"""Execute a task with the agent.
Args:
task: Task to execute.
context: Context to execute the task in.
tools: Tools to use for the task.
Returns:
Output of the agent
Raises:
TimeoutError: If execution exceeds the maximum execution time.
ValueError: If the max execution time is not a positive integer.
RuntimeError: If the agent execution fails for other reasons.
"""
if self.reasoning:
try:
from crewai.utilities.reasoning_handler import (
AgentReasoning,
AgentReasoningOutput,
)
reasoning_handler = AgentReasoning(task=task, agent=self)
reasoning_output: AgentReasoningOutput = (
reasoning_handler.handle_agent_reasoning()
)
# Add the reasoning plan to the task description
task.description += f"\n\nReasoning Plan:\n{reasoning_output.plan.plan}"
except Exception as e:
if hasattr(self, "_logger"):
self._logger.log(
"error", f"Error during reasoning process: {str(e)}"
)
else:
print(f"Error during reasoning process: {str(e)}")
self._inject_date_to_task(task)
if self.tools_handler:
self.tools_handler.last_used_tool = {} # type: ignore # Incompatible types in assignment (expression has type "dict[Never, Never]", variable has type "ToolCalling")
task_prompt = task.prompt()
# If the task requires output in JSON or Pydantic format,
# append specific instructions to the task prompt to ensure
# that the final answer does not include any code block markers
if task.output_json or task.output_pydantic:
# Generate the schema based on the output format
if task.output_json:
# schema = json.dumps(task.output_json, indent=2)
schema = generate_model_description(task.output_json)
task_prompt += "\n" + self.i18n.slice(
"formatted_task_instructions"
).format(output_format=schema)
elif task.output_pydantic:
schema = generate_model_description(task.output_pydantic)
task_prompt += "\n" + self.i18n.slice(
"formatted_task_instructions"
).format(output_format=schema)
if context:
task_prompt = self.i18n.slice("task_with_context").format(
task=task_prompt, context=context
)
if self._is_any_available_memory():
contextual_memory = ContextualMemory(
self.crew.memory_config,
self.crew._short_term_memory,
self.crew._long_term_memory,
self.crew._entity_memory,
self.crew._user_memory,
self.crew._external_memory,
)
memory = contextual_memory.build_context_for_task(task, context)
if memory.strip() != "":
task_prompt += self.i18n.slice("memory").format(memory=memory)
knowledge_config = (
self.knowledge_config.model_dump() if self.knowledge_config else {}
)
if self.knowledge:
crewai_event_bus.emit(
self,
event=KnowledgeRetrievalStartedEvent(
agent=self,
),
)
try:
self.knowledge_search_query = self._get_knowledge_search_query(
task_prompt
)
if self.knowledge_search_query:
agent_knowledge_snippets = self.knowledge.query(
[self.knowledge_search_query], **knowledge_config
)
if agent_knowledge_snippets:
self.agent_knowledge_context = extract_knowledge_context(
agent_knowledge_snippets
)
if self.agent_knowledge_context:
task_prompt += self.agent_knowledge_context
if self.crew:
knowledge_snippets = self.crew.query_knowledge(
[self.knowledge_search_query], **knowledge_config
)
if knowledge_snippets:
self.crew_knowledge_context = extract_knowledge_context(
knowledge_snippets
)
if self.crew_knowledge_context:
task_prompt += self.crew_knowledge_context
crewai_event_bus.emit(
self,
event=KnowledgeRetrievalCompletedEvent(
query=self.knowledge_search_query,
agent=self,
retrieved_knowledge=(
(self.agent_knowledge_context or "")
+ (
"\n"
if self.agent_knowledge_context
and self.crew_knowledge_context
else ""
)
+ (self.crew_knowledge_context or "")
),
),
)
except Exception as e:
crewai_event_bus.emit(
self,
event=KnowledgeSearchQueryFailedEvent(
query=self.knowledge_search_query or "",
agent=self,
error=str(e),
),
)
tools = tools or self.tools or []
self.create_agent_executor(tools=tools, task=task)
if self.crew and self.crew._train:
task_prompt = self._training_handler(task_prompt=task_prompt)
else:
task_prompt = self._use_trained_data(task_prompt=task_prompt)
try:
crewai_event_bus.emit(
self,
event=AgentExecutionStartedEvent(
agent=self,
tools=self.tools,
task_prompt=task_prompt,
task=task,
),
)
# Determine execution method based on timeout setting
if self.max_execution_time is not None:
if (
not isinstance(self.max_execution_time, int)
or self.max_execution_time <= 0
):
raise ValueError(
"Max Execution time must be a positive integer greater than zero"
)
result = self._execute_with_timeout(
task_prompt, task, self.max_execution_time
)
else:
result = self._execute_without_timeout(task_prompt, task)
except TimeoutError as e:
# Propagate TimeoutError without retry
crewai_event_bus.emit(
self,
event=AgentExecutionErrorEvent(
agent=self,
task=task,
error=str(e),
),
)
raise e
except Exception as e:
if e.__class__.__module__.startswith("litellm"):
# Do not retry on litellm errors
crewai_event_bus.emit(
self,
event=AgentExecutionErrorEvent(
agent=self,
task=task,
error=str(e),
),
)
raise e
self._times_executed += 1
if self._times_executed > self.max_retry_limit:
crewai_event_bus.emit(
self,
event=AgentExecutionErrorEvent(
agent=self,
task=task,
error=str(e),
),
)
raise e
result = self.execute_task(task, context, tools)
if self.max_rpm and self._rpm_controller:
self._rpm_controller.stop_rpm_counter()
# If there was any tool in self.tools_results that had result_as_answer
# set to True, return the results of the last tool that had
# result_as_answer set to True
for tool_result in self.tools_results: # type: ignore # Item "None" of "list[Any] | None" has no attribute "__iter__" (not iterable)
if tool_result.get("result_as_answer", False):
result = tool_result["result"]
crewai_event_bus.emit(
self,
event=AgentExecutionCompletedEvent(agent=self, task=task, output=result),
)
return result
def _execute_with_timeout(self, task_prompt: str, task: Task, timeout: int) -> str:
"""Execute a task with a timeout.
Args:
task_prompt: The prompt to send to the agent.
task: The task being executed.
timeout: Maximum execution time in seconds.
Returns:
The output of the agent.
Raises:
TimeoutError: If execution exceeds the timeout.
RuntimeError: If execution fails for other reasons.
"""
import concurrent.futures
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(
self._execute_without_timeout, task_prompt=task_prompt, task=task
)
try:
return future.result(timeout=timeout)
except concurrent.futures.TimeoutError:
future.cancel()
raise TimeoutError(
f"Task '{task.description}' execution timed out after {timeout} seconds. Consider increasing max_execution_time or optimizing the task."
)
except Exception as e:
future.cancel()
raise RuntimeError(f"Task execution failed: {str(e)}")
def _execute_without_timeout(self, task_prompt: str, task: Task) -> str:
"""Execute a task without a timeout.
Args:
task_prompt: The prompt to send to the agent.
task: The task being executed.
Returns:
The output of the agent.
"""
return self.agent_executor.invoke(
{
"input": task_prompt,
"tool_names": self.agent_executor.tools_names,
"tools": self.agent_executor.tools_description,
"ask_for_human_input": task.human_input,
}
)["output"]
def create_agent_executor(
self, tools: Optional[List[BaseTool]] = None, task=None
) -> None:
"""Create an agent executor for the agent.
Returns:
An instance of the CrewAgentExecutor class.
"""
raw_tools: List[BaseTool] = tools or self.tools or []
parsed_tools = parse_tools(raw_tools)
prompt = Prompts(
agent=self,
has_tools=len(raw_tools) > 0,
i18n=self.i18n,
use_system_prompt=self.use_system_prompt,
system_template=self.system_template,
prompt_template=self.prompt_template,
response_template=self.response_template,
).task_execution()
stop_words = [self.i18n.slice("observation")]
if self.response_template:
stop_words.append(
self.response_template.split("{{ .Response }}")[1].strip()
)
self.agent_executor = CrewAgentExecutor(
llm=self.llm,
task=task,
agent=self,
crew=self.crew,
tools=parsed_tools,
prompt=prompt,
original_tools=raw_tools,
stop_words=stop_words,
max_iter=self.max_iter,
tools_handler=self.tools_handler,
tools_names=get_tool_names(parsed_tools),
tools_description=render_text_description_and_args(parsed_tools),
step_callback=self.step_callback,
function_calling_llm=self.function_calling_llm,
respect_context_window=self.respect_context_window,
request_within_rpm_limit=(
self._rpm_controller.check_or_wait if self._rpm_controller else None
),
callbacks=[TokenCalcHandler(self._token_process)],
)
def get_delegation_tools(self, agents: List[BaseAgent]):
agent_tools = AgentTools(agents=agents)
tools = agent_tools.tools()
return tools
def get_multimodal_tools(self) -> Sequence[BaseTool]:
from crewai.tools.agent_tools.add_image_tool import AddImageTool
return [AddImageTool()]
def get_code_execution_tools(self):
try:
from crewai_tools import CodeInterpreterTool # type: ignore
# Set the unsafe_mode based on the code_execution_mode attribute
unsafe_mode = self.code_execution_mode == "unsafe"
return [CodeInterpreterTool(unsafe_mode=unsafe_mode)]
except ModuleNotFoundError:
self._logger.log(
"info", "Coding tools not available. Install crewai_tools. "
)
def get_output_converter(self, llm, text, model, instructions):
return Converter(llm=llm, text=text, model=model, instructions=instructions)
def _training_handler(self, task_prompt: str) -> str:
"""Handle training data for the agent task prompt to improve output on Training."""
if data := CrewTrainingHandler(TRAINING_DATA_FILE).load():
agent_id = str(self.id)
if data.get(agent_id):
human_feedbacks = [
i["human_feedback"] for i in data.get(agent_id, {}).values()
]
task_prompt += (
"\n\nYou MUST follow these instructions: \n "
+ "\n - ".join(human_feedbacks)
)
return task_prompt
def _use_trained_data(self, task_prompt: str) -> str:
"""Use trained data for the agent task prompt to improve output."""
if data := CrewTrainingHandler(TRAINED_AGENTS_DATA_FILE).load():
if trained_data_output := data.get(self.role):
task_prompt += (
"\n\nYou MUST follow these instructions: \n - "
+ "\n - ".join(trained_data_output["suggestions"])
)
return task_prompt
def _render_text_description(self, tools: List[Any]) -> str:
"""Render the tool name and description in plain text.
Output will be in the format of:
.. code-block:: markdown
search: This tool is used for search
calculator: This tool is used for math
"""
description = "\n".join(
[
f"Tool name: {tool.name}\nTool description:\n{tool.description}"
for tool in tools
]
)
return description
def _inject_date_to_task(self, task):
"""Inject the current date into the task description if inject_date is enabled."""
if self.inject_date:
from datetime import datetime
try:
valid_format_codes = [
"%Y",
"%m",
"%d",
"%H",
"%M",
"%S",
"%B",
"%b",
"%A",
"%a",
]
is_valid = any(code in self.date_format for code in valid_format_codes)
if not is_valid:
raise ValueError(f"Invalid date format: {self.date_format}")
current_date: str = datetime.now().strftime(self.date_format)
task.description += f"\n\nCurrent Date: {current_date}"
except Exception as e:
if hasattr(self, "_logger"):
self._logger.log("warning", f"Failed to inject date: {str(e)}")
else:
print(f"Warning: Failed to inject date: {str(e)}")
def _validate_docker_installation(self) -> None:
"""Check if Docker is installed and running."""
if not shutil.which("docker"):
raise RuntimeError(
f"Docker is not installed. Please install Docker to use code execution with agent: {self.role}"
)
try:
subprocess.run(
["docker", "info"],
check=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
except subprocess.CalledProcessError:
raise RuntimeError(
f"Docker is not running. Please start Docker to use code execution with agent: {self.role}"
)
def __repr__(self):
return f"Agent(role={self.role}, goal={self.goal}, backstory={self.backstory})"
@property
def fingerprint(self) -> Fingerprint:
"""
Get the agent's fingerprint.
Returns:
Fingerprint: The agent's fingerprint
"""
return self.security_config.fingerprint
def set_fingerprint(self, fingerprint: Fingerprint):
self.security_config.fingerprint = fingerprint
def _get_knowledge_search_query(self, task_prompt: str) -> str | None:
"""Generate a search query for the knowledge base based on the task description."""
crewai_event_bus.emit(
self,
event=KnowledgeQueryStartedEvent(
task_prompt=task_prompt,
agent=self,
),
)
query = self.i18n.slice("knowledge_search_query").format(
task_prompt=task_prompt
)
rewriter_prompt = self.i18n.slice("knowledge_search_query_system_prompt")
if not isinstance(self.llm, BaseLLM):
self._logger.log(
"warning",
f"Knowledge search query failed: LLM for agent '{self.role}' is not an instance of BaseLLM",
)
crewai_event_bus.emit(
self,
event=KnowledgeQueryFailedEvent(
agent=self,
error="LLM is not compatible with knowledge search queries",
),
)
return None
try:
rewritten_query = self.llm.call(
[
{
"role": "system",
"content": rewriter_prompt,
},
{"role": "user", "content": query},
]
)
crewai_event_bus.emit(
self,
event=KnowledgeQueryCompletedEvent(
query=query,
agent=self,
),
)
return rewritten_query
except Exception as e:
crewai_event_bus.emit(
self,
event=KnowledgeQueryFailedEvent(
agent=self,
error=str(e),
),
)
return None
def kickoff(
self,
messages: Union[str, List[Dict[str, str]]],
response_format: Optional[Type[Any]] = None,
) -> LiteAgentOutput:
"""
Execute the agent with the given messages using a LiteAgent instance.
This method is useful when you want to use the Agent configuration but
with the simpler and more direct execution flow of LiteAgent.
Args:
messages: Either a string query or a list of message dictionaries.
If a string is provided, it will be converted to a user message.
If a list is provided, each dict should have 'role' and 'content' keys.
response_format: Optional Pydantic model for structured output.
Returns:
LiteAgentOutput: The result of the agent execution.
"""
lite_agent = LiteAgent(
role=self.role,
goal=self.goal,
backstory=self.backstory,
llm=self.llm,
tools=self.tools or [],
max_iterations=self.max_iter,
max_execution_time=self.max_execution_time,
respect_context_window=self.respect_context_window,
verbose=self.verbose,
response_format=response_format,
i18n=self.i18n,
original_agent=self,
guardrail=self.guardrail,
guardrail_max_retries=self.guardrail_max_retries,
)
return lite_agent.kickoff(messages)
async def kickoff_async(
self,
messages: Union[str, List[Dict[str, str]]],
response_format: Optional[Type[Any]] = None,
) -> LiteAgentOutput:
"""
Execute the agent asynchronously with the given messages using a LiteAgent instance.
This is the async version of the kickoff method.
Args:
messages: Either a string query or a list of message dictionaries.
If a string is provided, it will be converted to a user message.
If a list is provided, each dict should have 'role' and 'content' keys.
response_format: Optional Pydantic model for structured output.
Returns:
LiteAgentOutput: The result of the agent execution.
"""
lite_agent = LiteAgent(
role=self.role,
goal=self.goal,
backstory=self.backstory,
llm=self.llm,
tools=self.tools or [],
max_iterations=self.max_iter,
max_execution_time=self.max_execution_time,
respect_context_window=self.respect_context_window,
verbose=self.verbose,
response_format=response_format,
i18n=self.i18n,
original_agent=self,
)
return await lite_agent.kickoff_async(messages)