Files
crewAI/docs/pt-BR/learn/create-custom-tools.mdx
Greyson LaLonde 09f1ba6956
Some checks failed
CodeQL Advanced / Analyze (actions) (push) Has been cancelled
CodeQL Advanced / Analyze (python) (push) Has been cancelled
Notify Downstream / notify-downstream (push) Has been cancelled
Check Documentation Broken Links / Check broken links (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
feat: native async tool support
- add async support for tools
- add async tool tests
- improve tool decorator typing
- fix _run backward compatibility
- update docs and improve readability of docstrings
2025-12-02 16:39:58 -05:00

121 lines
4.5 KiB
Plaintext

---
title: Criar Ferramentas Personalizadas
description: Guia abrangente sobre como criar, utilizar e gerenciar ferramentas personalizadas dentro do framework CrewAI, incluindo novas funcionalidades e tratamento de erros.
icon: hammer
mode: "wide"
---
## Criando e Utilizando Ferramentas no CrewAI
Este guia traz instruções detalhadas sobre como criar ferramentas personalizadas para o framework CrewAI e como gerenciar e utilizar essas ferramentas de forma eficiente,
incorporando funcionalidades recentes, como delegação de ferramentas, tratamento de erros e chamada dinâmica de ferramentas. Destaca também a importância de ferramentas de colaboração,
permitindo que agentes executem uma ampla gama de ações.
### Subclassificando `BaseTool`
Para criar uma ferramenta personalizada, herde de `BaseTool` e defina os atributos necessários, incluindo o `args_schema` para validação de entrada e o método `_run`.
```python Code
from typing import Type
from crewai.tools import BaseTool
from pydantic import BaseModel, Field
class MyToolInput(BaseModel):
"""Input schema for MyCustomTool."""
argument: str = Field(..., description="Description of the argument.")
class MyCustomTool(BaseTool):
name: str = "Name of my tool"
description: str = "What this tool does. It's vital for effective utilization."
args_schema: Type[BaseModel] = MyToolInput
def _run(self, argument: str) -> str:
# Your tool's logic here
return "Tool's result"
```
### Usando o Decorador `tool`
Como alternativa, você pode utilizar o decorador de ferramenta `@tool`. Esta abordagem permite definir os atributos e as funcionalidades da ferramenta diretamente em uma função,
oferecendo uma maneira concisa e eficiente de criar ferramentas especializadas de acordo com suas necessidades.
```python Code
from crewai.tools import tool
@tool("Tool Name")
def my_simple_tool(question: str) -> str:
"""Tool description for clarity."""
# Tool logic here
return "Tool output"
```
### Definindo uma Função de Cache para a Ferramenta
Para otimizar o desempenho da ferramenta com cache, defina estratégias de cache personalizadas utilizando o atributo `cache_function`.
```python Code
@tool("Tool with Caching")
def cached_tool(argument: str) -> str:
"""Tool functionality description."""
return "Cacheable result"
def my_cache_strategy(arguments: dict, result: str) -> bool:
# Define custom caching logic
return True if some_condition else False
cached_tool.cache_function = my_cache_strategy
```
### Criando Ferramentas Assíncronas
O CrewAI suporta ferramentas assíncronas para operações de I/O não bloqueantes. Isso é útil quando sua ferramenta precisa fazer requisições HTTP, consultas a banco de dados ou outras operações de I/O.
#### Usando o Decorador `@tool` com Funções Assíncronas
A maneira mais simples de criar uma ferramenta assíncrona é usando o decorador `@tool` com uma função async:
```python Code
import aiohttp
from crewai.tools import tool
@tool("Async Web Fetcher")
async def fetch_webpage(url: str) -> str:
"""Fetch content from a webpage asynchronously."""
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
return await response.text()
```
#### Subclassificando `BaseTool` com Suporte Assíncrono
Para maior controle, herde de `BaseTool` e implemente os métodos `_run` (síncrono) e `_arun` (assíncrono):
```python Code
import requests
import aiohttp
from crewai.tools import BaseTool
from pydantic import BaseModel, Field
class WebFetcherInput(BaseModel):
"""Input schema for WebFetcher."""
url: str = Field(..., description="The URL to fetch")
class WebFetcherTool(BaseTool):
name: str = "Web Fetcher"
description: str = "Fetches content from a URL"
args_schema: type[BaseModel] = WebFetcherInput
def _run(self, url: str) -> str:
"""Synchronous implementation."""
return requests.get(url).text
async def _arun(self, url: str) -> str:
"""Asynchronous implementation for non-blocking I/O."""
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
return await response.text()
```
Seguindo essas orientações e incorporando novas funcionalidades e ferramentas de colaboração nos seus processos de criação e gerenciamento de ferramentas,
você pode aproveitar ao máximo as capacidades do framework CrewAI, aprimorando tanto a experiência de desenvolvimento quanto a eficiência dos seus agentes de IA.