Files
crewAI/tests/test_generate_tool_specs.py
Lucas Gomide 748f438232 Support to generate a tool spec file for each published released (#313)
* feat: generate tool specs file based on their schema definition

* generate tool spec after publishing a new release

* feat: support add available env-vars to tool.specs.json

* refactor: use better identifier names on tool specs

* feat: change tool specs generation to run daily

* feat: add auth token to notify api about tool changes

* refactor: use humanized_name instead of verbose_name

* refactor: generate tool spec after pushing to main

This commit also fix the remote upstream & updated the notify api
2025-06-03 10:11:17 -04:00

190 lines
7.7 KiB
Python

import json
from typing import List, Optional
import pytest
from pydantic import BaseModel, Field
from unittest import mock
from generate_tool_specs import ToolSpecExtractor
from crewai.tools.base_tool import EnvVar
class MockToolSchema(BaseModel):
query: str = Field(..., description="The query parameter")
count: int = Field(5, description="Number of results to return")
filters: Optional[List[str]] = Field(None, description="Optional filters to apply")
class MockTool:
name = "Mock Search Tool"
description = "A tool that mocks search functionality"
args_schema = MockToolSchema
@pytest.fixture
def extractor():
ext = ToolSpecExtractor()
MockTool.__pydantic_core_schema__ = create_mock_schema(MockTool)
MockTool.args_schema.__pydantic_core_schema__ = create_mock_schema_args(MockTool.args_schema)
return ext
def create_mock_schema(cls):
return {
"type": "model",
"cls": cls,
"schema": {
"type": "model-fields",
"fields": {
"name": {"type": "model-field", "schema": {"type": "default", "schema": {"type": "str"}, "default": cls.name}, "metadata": {}},
"description": {"type": "model-field", "schema": {"type": "default", "schema": {"type": "str"}, "default": cls.description}, "metadata": {}},
"args_schema": {"type": "model-field", "schema": {"type": "default", "schema": {"type": "is-subclass", "cls": BaseModel}, "default": cls.args_schema}, "metadata": {}},
"env_vars": {
"type": "model-field", "schema": {"type": "default", "schema": {"type": "list", "items_schema": {"type": "model", "cls": "INSPECT CLASS", "schema": {"type": "model-fields", "fields": {"name": {"type": "model-field", "schema": {"type": "str"}, "metadata": {}}, "description": {"type": "model-field", "schema": {"type": "str"}, "metadata": {}}, "required": {"type": "model-field", "schema": {"type": "default", "schema": {"type": "bool"}, "default": True}, "metadata": {}}, "default": {"type": "model-field", "schema": {"type": "default", "schema": {"type": "nullable", "schema": {"type": "str"}}, "default": None}, "metadata": {}},}, "model_name": "EnvVar", "computed_fields": []}, "custom_init": False, "root_model": False, "config": {"title": "EnvVar"}, "ref": "crewai.tools.base_tool.EnvVar:4593650640", "metadata": {"pydantic_js_functions": ["INSPECT __get_pydantic_json_schema__"]}}}, "default": [EnvVar(name='SERPER_API_KEY', description='API key for Serper', required=True, default=None), EnvVar(name='API_RATE_LIMIT', description='API rate limit', required=False, default="100")]}, "metadata": {}
}
},
"model_name": cls.__name__
}
}
def create_mock_schema_args(cls):
return {
"type": "model",
"cls": cls,
"schema": {
"type": "model-fields",
"fields": {
"query": {"type": "model-field", "schema": {"type": "default", "schema": {"type": "str"}, "default": "The query parameter"}},
"count": {"type": "model-field", "schema": {"type": "default", "schema": {"type": "int"}, "default": 5}, "metadata": {"pydantic_js_updates": {"description": "Number of results to return"}}},
"filters": {"type": "model-field", "schema": {"type": "nullable", "schema": {"type": "list", "items_schema": {"type": "str"}}}}
},
"model_name": cls.__name__
}
}
def test_unwrap_schema(extractor):
nested_schema = {
"type": "function-after",
"schema": {"type": "default", "schema": {"type": "str", "value": "test"}}
}
result = extractor._unwrap_schema(nested_schema)
assert result["type"] == "str"
assert result["value"] == "test"
@pytest.mark.parametrize(
"field, fallback, expected",
[
({"schema": {"default": "test_value"}}, None, "test_value"),
({}, "fallback_value", "fallback_value"),
({"schema": {"default": 123}}, "fallback_value", "fallback_value")
]
)
def test_extract_field_default(extractor, field, fallback, expected):
result = extractor._extract_field_default(field, fallback=fallback)
assert result == expected
@pytest.mark.parametrize(
"schema, expected",
[
({"type": "str"}, "str"),
({"type": "list", "items_schema": {"type": "str"}}, "list[str]"),
({"type": "dict", "keys_schema": {"type": "str"}, "values_schema": {"type": "int"}}, "dict[str, int]"),
({"type": "union", "choices": [{"type": "str"}, {"type": "int"}]}, "union[str, int]"),
({"type": "custom_type"}, "custom_type"),
({}, "unknown"),
]
)
def test_schema_type_to_str(extractor, schema, expected):
assert extractor._schema_type_to_str(schema) == expected
@pytest.mark.parametrize(
"info, expected_type",
[
({"schema": {"type": "str"}}, "str"),
({"schema": {"type": "nullable", "schema": {"type": "int"}}}, "int"),
({"schema": {"type": "default", "schema": {"type": "list", "items_schema": {"type": "str"}}}}, "list[str]"),
]
)
def test_extract_param_type(extractor, info, expected_type):
assert extractor._extract_param_type(info) == expected_type
def test_extract_tool_info(extractor):
with mock.patch("generate_tool_specs.dir", return_value=["MockTool"]), \
mock.patch("generate_tool_specs.getattr", return_value=MockTool):
extractor.extract_all_tools()
assert len(extractor.tools_spec) == 1
tool_info = extractor.tools_spec[0]
assert tool_info["name"] == "MockTool"
assert tool_info["humanized_name"] == "Mock Search Tool"
assert tool_info["description"] == "A tool that mocks search functionality"
assert len(tool_info["env_vars"]) == 2
api_key_var, rate_limit_var = tool_info["env_vars"]
assert api_key_var["name"] == "SERPER_API_KEY"
assert api_key_var["description"] == "API key for Serper"
assert api_key_var["required"] == True
assert api_key_var["default"] == None
assert rate_limit_var["name"] == "API_RATE_LIMIT"
assert rate_limit_var["description"] == "API rate limit"
assert rate_limit_var["required"] == False
assert rate_limit_var["default"] == "100"
assert len(tool_info["run_params"]) == 3
params = {p["name"]: p for p in tool_info["run_params"]}
assert params["query"]["description"] == "The query parameter"
assert params["query"]["type"] == "str"
assert params["count"]["description"] == "Number of results to return"
assert params["count"]["type"] == "int"
assert params["filters"]["description"] == ""
assert params["filters"]["type"] == "list[str]"
def test_save_to_json(extractor, tmp_path):
extractor.tools_spec = [{
"name": "TestTool",
"humanized_name": "Test Tool",
"description": "A test tool",
"run_params": [
{"name": "param1", "description": "Test parameter", "type": "str"}
]
}]
file_path = tmp_path / "output.json"
extractor.save_to_json(str(file_path))
assert file_path.exists()
with open(file_path, "r") as f:
data = json.load(f)
assert "tools" in data
assert len(data["tools"]) == 1
assert data["tools"][0]["humanized_name"] == "Test Tool"
assert data["tools"][0]["run_params"][0]["name"] == "param1"
@pytest.mark.integration
def test_full_extraction_process():
extractor = ToolSpecExtractor()
specs = extractor.extract_all_tools()
assert len(specs) > 0
for tool in specs:
assert "name" in tool
assert "humanized_name" in tool and tool["humanized_name"]
assert "description" in tool
assert isinstance(tool["run_params"], list)
for param in tool["run_params"]:
assert "name" in param and param["name"]