Files
crewAI/src/crewai/memory/storage/rag_storage.py
2025-05-05 09:06:33 +00:00

206 lines
6.4 KiB
Python

import contextlib
import io
import logging
import os
import shutil
import uuid
from typing import Any, Dict, List, Optional
import numpy as np
from chromadb.api import ClientAPI
from crewai.memory.storage.base_rag_storage import BaseRAGStorage
from crewai.utilities import EmbeddingConfigurator
from crewai.utilities.constants import MAX_FILE_NAME_LENGTH, MEMORY_CHUNK_SIZE, MEMORY_CHUNK_OVERLAP
from crewai.utilities.paths import db_storage_path
@contextlib.contextmanager
def suppress_logging(
logger_name="chromadb.segment.impl.vector.local_persistent_hnsw",
level=logging.ERROR,
):
logger = logging.getLogger(logger_name)
original_level = logger.getEffectiveLevel()
logger.setLevel(level)
with (
contextlib.redirect_stdout(io.StringIO()),
contextlib.redirect_stderr(io.StringIO()),
contextlib.suppress(UserWarning),
):
yield
logger.setLevel(original_level)
class RAGStorage(BaseRAGStorage):
"""
Extends Storage to handle embeddings for memory entries, improving
search efficiency.
"""
app: ClientAPI | None = None
def __init__(
self, type, allow_reset=True, embedder_config=None, crew=None, path=None
):
super().__init__(type, allow_reset, embedder_config, crew)
agents = crew.agents if crew else []
agents = [self._sanitize_role(agent.role) for agent in agents]
agents = "_".join(agents)
self.agents = agents
self.storage_file_name = self._build_storage_file_name(type, agents)
self.type = type
self.allow_reset = allow_reset
self.path = path
self._initialize_app()
def _set_embedder_config(self):
configurator = EmbeddingConfigurator()
self.embedder_config = configurator.configure_embedder(self.embedder_config)
def _initialize_app(self):
import chromadb
from chromadb.config import Settings
self._set_embedder_config()
chroma_client = chromadb.PersistentClient(
path=self.path if self.path else self.storage_file_name,
settings=Settings(allow_reset=self.allow_reset),
)
self.app = chroma_client
try:
self.collection = self.app.get_collection(
name=self.type, embedding_function=self.embedder_config
)
except Exception:
self.collection = self.app.create_collection(
name=self.type, embedding_function=self.embedder_config
)
def _sanitize_role(self, role: str) -> str:
"""
Sanitizes agent roles to ensure valid directory names.
"""
return role.replace("\n", "").replace(" ", "_").replace("/", "_")
def _build_storage_file_name(self, type: str, file_name: str) -> str:
"""
Ensures file name does not exceed max allowed by OS
"""
base_path = f"{db_storage_path()}/{type}"
if len(file_name) > MAX_FILE_NAME_LENGTH:
logging.warning(
f"Trimming file name from {len(file_name)} to {MAX_FILE_NAME_LENGTH} characters."
)
file_name = file_name[:MAX_FILE_NAME_LENGTH]
return f"{base_path}/{file_name}"
def save(self, value: Any, metadata: Dict[str, Any]) -> None:
if not hasattr(self, "app") or not hasattr(self, "collection"):
self._initialize_app()
try:
self._generate_embedding(value, metadata)
except Exception as e:
logging.error(f"Error during {self.type} save: {str(e)}")
def search(
self,
query: str,
limit: int = 3,
filter: Optional[dict] = None,
score_threshold: float = 0.35,
) -> List[Any]:
if not hasattr(self, "app"):
self._initialize_app()
try:
with suppress_logging():
response = self.collection.query(query_texts=query, n_results=limit)
results = []
for i in range(len(response["ids"][0])):
result = {
"id": response["ids"][0][i],
"metadata": response["metadatas"][0][i],
"context": response["documents"][0][i],
"score": response["distances"][0][i],
}
if result["score"] >= score_threshold:
results.append(result)
return results
except Exception as e:
logging.error(f"Error during {self.type} search: {str(e)}")
return []
def _chunk_text(self, text: str) -> List[str]:
"""
Split text into chunks to avoid token limits.
Args:
text: Text to chunk
Returns:
List of text chunks
"""
if not text:
return []
if len(text) <= MEMORY_CHUNK_SIZE:
return [text]
chunks = []
for i in range(0, len(text), MEMORY_CHUNK_SIZE - MEMORY_CHUNK_OVERLAP):
chunk = text[i:i + MEMORY_CHUNK_SIZE]
if chunk: # Only add non-empty chunks
chunks.append(chunk)
return chunks
def _generate_embedding(self, text: str, metadata: Dict[str, Any]) -> None: # type: ignore
if not hasattr(self, "app") or not hasattr(self, "collection"):
self._initialize_app()
chunks = self._chunk_text(text)
if not chunks:
return None
for chunk in chunks:
self.collection.add(
documents=[chunk],
metadatas=[metadata or {}],
ids=[str(uuid.uuid4())],
)
def reset(self) -> None:
try:
if self.app:
self.app.reset()
shutil.rmtree(f"{db_storage_path()}/{self.type}")
self.app = None
self.collection = None
except Exception as e:
if "attempt to write a readonly database" in str(e):
# Ignore this specific error
pass
else:
raise Exception(
f"An error occurred while resetting the {self.type} memory: {e}"
)
def _create_default_embedding_function(self):
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
return OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)