Files
crewAI/src/crewai/knowledge/storage/knowledge_storage.py
2024-11-26 11:52:57 -08:00

151 lines
5.0 KiB
Python

import contextlib
import io
import logging
import chromadb
import os
from crewai.utilities.paths import db_storage_path
from typing import Optional, List, Dict, Any
from crewai.utilities import EmbeddingConfigurator
from crewai.knowledge.storage.base_knowledge_storage import BaseKnowledgeStorage
import hashlib
from chromadb.config import Settings
@contextlib.contextmanager
def suppress_logging(
logger_name="chromadb.segment.impl.vector.local_persistent_hnsw",
level=logging.ERROR,
):
logger = logging.getLogger(logger_name)
original_level = logger.getEffectiveLevel()
logger.setLevel(level)
with (
contextlib.redirect_stdout(io.StringIO()),
contextlib.redirect_stderr(io.StringIO()),
contextlib.suppress(UserWarning),
):
yield
logger.setLevel(original_level)
class KnowledgeStorage(BaseKnowledgeStorage):
"""
Extends Storage to handle embeddings for memory entries, improving
search efficiency.
"""
collection: Optional[chromadb.Collection] = None
collection_name: Optional[str] = "knowledge"
app: Optional[chromadb.PersistentClient] = None
def __init__(
self,
embedder_config: Optional[Dict[str, Any]] = None,
collection_name: Optional[str] = None,
):
self.embedder_config = embedder_config
self.collection_name = collection_name
def search(
self,
query: List[str],
limit: int = 3,
filter: Optional[dict] = None,
score_threshold: float = 0.35,
) -> List[Dict[str, Any]]:
with suppress_logging():
if self.collection:
fetched = self.collection.query(
query_texts=query,
n_results=limit,
where=filter,
)
results = []
for i in range(len(fetched["ids"][0])): # type: ignore
result = {
"id": fetched["ids"][0][i], # type: ignore
"metadata": fetched["metadatas"][0][i], # type: ignore
"context": fetched["documents"][0][i], # type: ignore
"score": fetched["distances"][0][i], # type: ignore
}
if result["score"] >= score_threshold: # type: ignore
results.append(result)
return results
else:
raise Exception("Collection not initialized")
def initialize_knowledge_storage(self):
base_path = os.path.join(db_storage_path(), "knowledge")
chroma_client = chromadb.PersistentClient(
path=base_path,
settings=Settings(allow_reset=True),
)
self.app = chroma_client
try:
collection_name = (
f"knowledge_{self.collection_name}"
if self.collection_name
else "knowledge"
)
if self.app:
self.collection = self.app.get_or_create_collection(
name=collection_name
)
else:
raise Exception("Vector Database Client not initialized")
except Exception:
raise Exception("Failed to create or get collection")
def reset(self):
if self.app:
self.app.reset()
else:
base_path = os.path.join(db_storage_path(), "knowledge")
self.app = chromadb.PersistentClient(
path=base_path,
settings=Settings(allow_reset=True),
)
self.app.reset()
def save(
self, documents: List[str], metadata: Dict[str, Any] | List[Dict[str, Any]]
):
if self.collection:
metadatas = [metadata] if isinstance(metadata, dict) else metadata
ids = [hashlib.sha256(doc.encode("utf-8")).hexdigest() for doc in documents]
self.collection.upsert(
documents=documents,
metadatas=metadatas,
ids=ids,
)
else:
raise Exception("Collection not initialized")
def _create_default_embedding_function(self):
from chromadb.utils.embedding_functions.openai_embedding_function import (
OpenAIEmbeddingFunction,
)
return OpenAIEmbeddingFunction(
api_key=os.getenv("OPENAI_API_KEY"), model_name="text-embedding-3-small"
)
def _set_embedder_config(
self, embedder_config: Optional[Dict[str, Any]] = None
) -> None:
"""Set the embedding configuration for the knowledge storage.
Args:
embedder_config (Optional[Dict[str, Any]]): Configuration dictionary for the embedder.
If None or empty, defaults to the default embedding function.
"""
self.embedder_config = (
EmbeddingConfigurator().configure_embedder(embedder_config)
if embedder_config
else self._create_default_embedding_function()
)