Files
crewAI/src/crewai/utilities/evaluators/task_evaluator.py
Taleb 0a23e1dc13 Performed spell check across the rest of code base, and enahnced the yaml paraser code a little (#895)
* Performed spell check across the entire documentation

Thank you once again!

* Performed spell check across the most of code base
Folders been checked:
- agents
- cli
- memory
- project
- tasks
- telemetry
- tools
- translations

* Trying to add a max_token for the agents, so they limited by number of tokens.

* Performed spell check across the rest of code base, and enahnced the yaml paraser code a little

* Small change in the main agent doc

* Improve _save_file method to handle both dict and str inputs

- Add check for dict type input
- Use json.dump for dict serialization
- Convert non-dict inputs to string
- Remove type ignore comments

---------

Co-authored-by: João Moura <joaomdmoura@gmail.com>
2024-07-28 15:39:54 -03:00

132 lines
5.2 KiB
Python

from typing import List
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
from crewai.utilities import Converter
from crewai.utilities.pydantic_schema_parser import PydanticSchemaParser
agentops = None
try:
from agentops import track_agent
except ImportError:
def track_agent(name):
def noop(f):
return f
return noop
class Entity(BaseModel):
name: str = Field(description="The name of the entity.")
type: str = Field(description="The type of the entity.")
description: str = Field(description="Description of the entity.")
relationships: List[str] = Field(description="Relationships of the entity.")
class TaskEvaluation(BaseModel):
suggestions: List[str] = Field(
description="Suggestions to improve future similar tasks."
)
quality: float = Field(
description="A score from 0 to 10 evaluating on completion, quality, and overall performance, all taking into account the task description, expected output, and the result of the task."
)
entities: List[Entity] = Field(
description="Entities extracted from the task output."
)
class TrainingTaskEvaluation(BaseModel):
suggestions: List[str] = Field(
description="Based on the Human Feedbacks and the comparison between Initial Outputs and Improved outputs provide action items based on human_feedback for future tasks."
)
quality: float = Field(
description="A score from 0 to 10 evaluating on completion, quality, and overall performance from the improved output to the initial output based on the human feedback."
)
final_summary: str = Field(
description="A step by step action items to improve the next Agent based on the human-feedback and improved output."
)
@track_agent(name="Task Evaluator")
class TaskEvaluator:
def __init__(self, original_agent):
self.llm = original_agent.llm
def evaluate(self, task, output) -> TaskEvaluation:
evaluation_query = (
f"Assess the quality of the task completed based on the description, expected output, and actual results.\n\n"
f"Task Description:\n{task.description}\n\n"
f"Expected Output:\n{task.expected_output}\n\n"
f"Actual Output:\n{output}\n\n"
"Please provide:\n"
"- Bullet points suggestions to improve future similar tasks\n"
"- A score from 0 to 10 evaluating on completion, quality, and overall performance"
"- Entities extracted from the task output, if any, their type, description, and relationships"
)
instructions = "Convert all responses into valid JSON output."
if not self._is_gpt(self.llm):
model_schema = PydanticSchemaParser(model=TaskEvaluation).get_schema()
instructions = f"{instructions}\n\nReturn only valid JSON with the following schema:\n```json\n{model_schema}\n```"
converter = Converter(
llm=self.llm,
text=evaluation_query,
model=TaskEvaluation,
instructions=instructions,
)
return converter.to_pydantic()
def _is_gpt(self, llm) -> bool:
return isinstance(llm, ChatOpenAI) and llm.openai_api_base is None
def evaluate_training_data(
self, training_data: dict, agent_id: str
) -> TrainingTaskEvaluation:
"""
Evaluate the training data based on the llm output, human feedback, and improved output.
Parameters:
- training_data (dict): The training data to be evaluated.
- agent_id (str): The ID of the agent.
"""
output_training_data = training_data[agent_id]
final_aggregated_data = ""
for _, data in output_training_data.items():
final_aggregated_data += (
f"Initial Output:\n{data['initial_output']}\n\n"
f"Human Feedback:\n{data['human_feedback']}\n\n"
f"Improved Output:\n{data['improved_output']}\n\n"
)
evaluation_query = (
"Assess the quality of the training data based on the llm output, human feedback , and llm output improved result.\n\n"
f"{final_aggregated_data}"
"Please provide:\n"
"- Based on the Human Feedbacks and the comparison between Initial Outputs and Improved outputs provide action items based on human_feedback for future tasks\n"
"- A score from 0 to 10 evaluating on completion, quality, and overall performance from the improved output to the initial output based on the human feedback\n"
)
instructions = "I'm gonna convert this raw text into valid JSON."
if not self._is_gpt(self.llm):
model_schema = PydanticSchemaParser(
model=TrainingTaskEvaluation
).get_schema()
instructions = f"{instructions}\n\nThe json should have the following structure, with the following keys:\n{model_schema}"
converter = Converter(
llm=self.llm,
text=evaluation_query,
model=TrainingTaskEvaluation,
instructions=instructions,
)
pydantic_result = converter.to_pydantic()
return pydantic_result