mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-08 15:48:29 +00:00
380 lines
15 KiB
Python
380 lines
15 KiB
Python
import json
|
|
import uuid
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
from langchain_core.callbacks import BaseCallbackHandler
|
|
from pydantic import (
|
|
UUID4,
|
|
BaseModel,
|
|
ConfigDict,
|
|
Field,
|
|
InstanceOf,
|
|
Json,
|
|
PrivateAttr,
|
|
field_validator,
|
|
model_validator,
|
|
)
|
|
from pydantic_core import PydanticCustomError
|
|
|
|
from crewai.agent import Agent
|
|
from crewai.agents.cache import CacheHandler
|
|
from crewai.memory.entity.entity_memory import EntityMemory
|
|
from crewai.memory.long_term.long_term_memory import LongTermMemory
|
|
from crewai.memory.short_term.short_term_memory import ShortTermMemory
|
|
from crewai.process import Process
|
|
from crewai.task import Task
|
|
from crewai.telemetry import Telemetry
|
|
from crewai.tools.agent_tools import AgentTools
|
|
from crewai.utilities import I18N, FileHandler, Logger, RPMController
|
|
|
|
|
|
class Crew(BaseModel):
|
|
"""
|
|
Represents a group of agents, defining how they should collaborate and the tasks they should perform.
|
|
|
|
Attributes:
|
|
tasks: List of tasks assigned to the crew.
|
|
agents: List of agents part of this crew.
|
|
manager_llm: The language model that will run manager agent.
|
|
manager_agent: Custom agent that will be used as manager.
|
|
memory: Whether the crew should use memory to store memories of it's execution.
|
|
manager_callbacks: The callback handlers to be executed by the manager agent when hierarchical process is used
|
|
cache: Whether the crew should use a cache to store the results of the tools execution.
|
|
function_calling_llm: The language model that will run the tool calling for all the agents.
|
|
process: The process flow that the crew will follow (e.g., sequential, hierarchical).
|
|
verbose: Indicates the verbosity level for logging during execution.
|
|
config: Configuration settings for the crew.
|
|
max_rpm: Maximum number of requests per minute for the crew execution to be respected.
|
|
prompt_file: Path to the prompt json file to be used for the crew.
|
|
id: A unique identifier for the crew instance.
|
|
full_output: Whether the crew should return the full output with all tasks outputs or just the final output.
|
|
task_callback: Callback to be executed after each task for every agents execution.
|
|
step_callback: Callback to be executed after each step for every agents execution.
|
|
share_crew: Whether you want to share the complete crew infromation and execution with crewAI to make the library better, and allow us to train models.
|
|
"""
|
|
|
|
__hash__ = object.__hash__ # type: ignore
|
|
_execution_span: Any = PrivateAttr()
|
|
_rpm_controller: RPMController = PrivateAttr()
|
|
_logger: Logger = PrivateAttr()
|
|
_file_handler: FileHandler = PrivateAttr()
|
|
_cache_handler: InstanceOf[CacheHandler] = PrivateAttr(default=CacheHandler())
|
|
_short_term_memory: Optional[InstanceOf[ShortTermMemory]] = PrivateAttr()
|
|
_long_term_memory: Optional[InstanceOf[LongTermMemory]] = PrivateAttr()
|
|
_entity_memory: Optional[InstanceOf[EntityMemory]] = PrivateAttr()
|
|
|
|
cache: bool = Field(default=True)
|
|
model_config = ConfigDict(arbitrary_types_allowed=True)
|
|
tasks: List[Task] = Field(default_factory=list)
|
|
agents: List[Agent] = Field(default_factory=list)
|
|
process: Process = Field(default=Process.sequential)
|
|
verbose: Union[int, bool] = Field(default=0)
|
|
memory: bool = Field(
|
|
default=False,
|
|
description="Whether the crew should use memory to store memories of it's execution",
|
|
)
|
|
embedder: Optional[dict] = Field(
|
|
default={"provider": "openai"},
|
|
description="Configuration for the embedder to be used for the crew.",
|
|
)
|
|
usage_metrics: Optional[dict] = Field(
|
|
default=None,
|
|
description="Metrics for the LLM usage during all tasks execution.",
|
|
)
|
|
full_output: Optional[bool] = Field(
|
|
default=False,
|
|
description="Whether the crew should return the full output with all tasks outputs or just the final output.",
|
|
)
|
|
manager_llm: Optional[Any] = Field(
|
|
description="Language model that will run the agent.", default=None
|
|
)
|
|
manager_agent: Optional[Any] = Field(
|
|
description="Custom agent that will be used as manager.", default=None
|
|
)
|
|
manager_callbacks: Optional[List[InstanceOf[BaseCallbackHandler]]] = Field(
|
|
default=None,
|
|
description="A list of callback handlers to be executed by the manager agent when hierarchical process is used",
|
|
)
|
|
function_calling_llm: Optional[Any] = Field(
|
|
description="Language model that will run the agent.", default=None
|
|
)
|
|
config: Optional[Union[Json, Dict[str, Any]]] = Field(default=None)
|
|
id: UUID4 = Field(default_factory=uuid.uuid4, frozen=True)
|
|
share_crew: Optional[bool] = Field(default=False)
|
|
step_callback: Optional[Any] = Field(
|
|
default=None,
|
|
description="Callback to be executed after each step for all agents execution.",
|
|
)
|
|
task_callback: Optional[Any] = Field(
|
|
default=None,
|
|
description="Callback to be executed after each task for all agents execution.",
|
|
)
|
|
max_rpm: Optional[int] = Field(
|
|
default=None,
|
|
description="Maximum number of requests per minute for the crew execution to be respected.",
|
|
)
|
|
prompt_file: str = Field(
|
|
default=None,
|
|
description="Path to the prompt json file to be used for the crew.",
|
|
)
|
|
output_log_file: Optional[Union[bool, str]] = Field(
|
|
default=False,
|
|
description="output_log_file",
|
|
)
|
|
|
|
@field_validator("id", mode="before")
|
|
@classmethod
|
|
def _deny_user_set_id(cls, v: Optional[UUID4]) -> None:
|
|
"""Prevent manual setting of the 'id' field by users."""
|
|
if v:
|
|
raise PydanticCustomError(
|
|
"may_not_set_field", "The 'id' field cannot be set by the user.", {}
|
|
)
|
|
|
|
@field_validator("config", mode="before")
|
|
@classmethod
|
|
def check_config_type(
|
|
cls, v: Union[Json, Dict[str, Any]]
|
|
) -> Union[Json, Dict[str, Any]]:
|
|
"""Validates that the config is a valid type.
|
|
Args:
|
|
v: The config to be validated.
|
|
Returns:
|
|
The config if it is valid.
|
|
"""
|
|
|
|
# TODO: Improve typing
|
|
return json.loads(v) if isinstance(v, Json) else v # type: ignore
|
|
|
|
@model_validator(mode="after")
|
|
def set_private_attrs(self) -> "Crew":
|
|
"""Set private attributes."""
|
|
self._cache_handler = CacheHandler()
|
|
self._logger = Logger(self.verbose)
|
|
if self.output_log_file:
|
|
self._file_handler = FileHandler(self.output_log_file)
|
|
self._rpm_controller = RPMController(max_rpm=self.max_rpm, logger=self._logger)
|
|
self._telemetry = Telemetry()
|
|
self._telemetry.set_tracer()
|
|
self._telemetry.crew_creation(self)
|
|
return self
|
|
|
|
@model_validator(mode="after")
|
|
def create_crew_memory(self) -> "Crew":
|
|
"""Set private attributes."""
|
|
if self.memory:
|
|
self._long_term_memory = LongTermMemory()
|
|
self._short_term_memory = ShortTermMemory(embedder_config=self.embedder)
|
|
self._entity_memory = EntityMemory(embedder_config=self.embedder)
|
|
return self
|
|
|
|
@model_validator(mode="after")
|
|
def check_manager_llm(self):
|
|
"""Validates that the language model is set when using hierarchical process."""
|
|
if self.process == Process.hierarchical and (
|
|
not self.manager_llm and not self.manager_agent
|
|
):
|
|
raise PydanticCustomError(
|
|
"missing_manager_llm_or_manager_agent",
|
|
"Attribute `manager_llm` or `manager_agent` is required when using hierarchical process.",
|
|
{},
|
|
)
|
|
return self
|
|
|
|
@model_validator(mode="after")
|
|
def check_config(self):
|
|
"""Validates that the crew is properly configured with agents and tasks."""
|
|
if not self.config and not self.tasks and not self.agents:
|
|
raise PydanticCustomError(
|
|
"missing_keys",
|
|
"Either 'agents' and 'tasks' need to be set or 'config'.",
|
|
{},
|
|
)
|
|
|
|
if self.config:
|
|
self._setup_from_config()
|
|
|
|
if self.agents:
|
|
for agent in self.agents:
|
|
if self.cache:
|
|
agent.set_cache_handler(self._cache_handler)
|
|
if self.max_rpm:
|
|
agent.set_rpm_controller(self._rpm_controller)
|
|
return self
|
|
|
|
def _setup_from_config(self):
|
|
assert self.config is not None, "Config should not be None."
|
|
|
|
"""Initializes agents and tasks from the provided config."""
|
|
if not self.config.get("agents") or not self.config.get("tasks"):
|
|
raise PydanticCustomError(
|
|
"missing_keys_in_config", "Config should have 'agents' and 'tasks'.", {}
|
|
)
|
|
|
|
self.process = self.config.get("process", self.process)
|
|
self.agents = [Agent(**agent) for agent in self.config["agents"]]
|
|
self.tasks = [self._create_task(task) for task in self.config["tasks"]]
|
|
|
|
def _create_task(self, task_config: Dict[str, Any]) -> Task:
|
|
"""Creates a task instance from its configuration.
|
|
|
|
Args:
|
|
task_config: The configuration of the task.
|
|
|
|
Returns:
|
|
A task instance.
|
|
"""
|
|
task_agent = next(
|
|
agt for agt in self.agents if agt.role == task_config["agent"]
|
|
)
|
|
del task_config["agent"]
|
|
return Task(**task_config, agent=task_agent)
|
|
|
|
def kickoff(self, inputs: Optional[Dict[str, Any]] = {}) -> str:
|
|
"""Starts the crew to work on its assigned tasks."""
|
|
self._execution_span = self._telemetry.crew_execution_span(self)
|
|
self._interpolate_inputs(inputs)
|
|
self._set_tasks_callbacks()
|
|
|
|
i18n = I18N(prompt_file=self.prompt_file)
|
|
|
|
for agent in self.agents:
|
|
agent.i18n = i18n
|
|
agent.crew = self
|
|
|
|
if not agent.function_calling_llm:
|
|
agent.function_calling_llm = self.function_calling_llm
|
|
if not agent.step_callback:
|
|
agent.step_callback = self.step_callback
|
|
|
|
agent.create_agent_executor()
|
|
|
|
metrics = []
|
|
|
|
if self.process == Process.sequential:
|
|
result = self._run_sequential_process()
|
|
elif self.process == Process.hierarchical:
|
|
result, manager_metrics = self._run_hierarchical_process()
|
|
metrics.append(manager_metrics)
|
|
|
|
else:
|
|
raise NotImplementedError(
|
|
f"The process '{self.process}' is not implemented yet."
|
|
)
|
|
|
|
metrics = metrics + [
|
|
agent._token_process.get_summary() for agent in self.agents
|
|
]
|
|
self.usage_metrics = {
|
|
key: sum([m[key] for m in metrics if m is not None]) for key in metrics[0]
|
|
}
|
|
|
|
return result
|
|
|
|
def _run_sequential_process(self) -> str:
|
|
"""Executes tasks sequentially and returns the final output."""
|
|
task_output = ""
|
|
for task in self.tasks:
|
|
if task.agent.allow_delegation:
|
|
agents_for_delegation = [
|
|
agent for agent in self.agents if agent != task.agent
|
|
]
|
|
if len(self.agents) > 1 and len(agents_for_delegation) > 0:
|
|
task.tools += AgentTools(agents=agents_for_delegation).tools()
|
|
|
|
role = task.agent.role if task.agent is not None else "None"
|
|
self._logger.log("debug", f"== Working Agent: {role}", color="bold_purple")
|
|
self._logger.log(
|
|
"info", f"== Starting Task: {task.description}", color="bold_purple"
|
|
)
|
|
|
|
if self.output_log_file:
|
|
self._file_handler.log(
|
|
agent=role, task=task.description, status="started"
|
|
)
|
|
|
|
output = task.execute(context=task_output)
|
|
if not task.async_execution:
|
|
task_output = output
|
|
|
|
role = task.agent.role if task.agent is not None else "None"
|
|
self._logger.log("debug", f"== [{role}] Task output: {task_output}\n\n")
|
|
|
|
if self.output_log_file:
|
|
self._file_handler.log(agent=role, task=task_output, status="completed")
|
|
|
|
self._finish_execution(task_output)
|
|
return self._format_output(task_output)
|
|
|
|
def _run_hierarchical_process(self) -> str:
|
|
"""Creates and assigns a manager agent to make sure the crew completes the tasks."""
|
|
|
|
i18n = I18N(prompt_file=self.prompt_file)
|
|
try:
|
|
self.manager_agent.allow_delegation = (
|
|
True # Forcing Allow delegation to the manager
|
|
)
|
|
manager = self.manager_agent
|
|
except:
|
|
manager = Agent(
|
|
role=i18n.retrieve("hierarchical_manager_agent", "role"),
|
|
goal=i18n.retrieve("hierarchical_manager_agent", "goal"),
|
|
backstory=i18n.retrieve("hierarchical_manager_agent", "backstory"),
|
|
tools=AgentTools(agents=self.agents).tools(),
|
|
llm=self.manager_llm,
|
|
verbose=True,
|
|
)
|
|
|
|
task_output = ""
|
|
for task in self.tasks:
|
|
self._logger.log("debug", f"Working Agent: {manager.role}")
|
|
self._logger.log("info", f"Starting Task: {task.description}")
|
|
|
|
if self.output_log_file:
|
|
self._file_handler.log(
|
|
agent=manager.role, task=task.description, status="started"
|
|
)
|
|
|
|
task_output = task.execute(
|
|
agent=manager, context=task_output, tools=manager.tools
|
|
)
|
|
|
|
self._logger.log("debug", f"[{manager.role}] Task output: {task_output}")
|
|
|
|
if self.output_log_file:
|
|
self._file_handler.log(
|
|
agent=manager.role, task=task_output, status="completed"
|
|
)
|
|
|
|
self._finish_execution(task_output)
|
|
return self._format_output(task_output), manager._token_process.get_summary()
|
|
|
|
def _set_tasks_callbacks(self) -> str:
|
|
"""Sets callback for every task suing task_callback"""
|
|
for task in self.tasks:
|
|
if not task.callback:
|
|
task.callback = self.task_callback
|
|
|
|
def _interpolate_inputs(self, inputs: Dict[str, Any]) -> str:
|
|
"""Interpolates the inputs in the tasks and agents."""
|
|
[task.interpolate_inputs(inputs) for task in self.tasks]
|
|
[agent.interpolate_inputs(inputs) for agent in self.agents]
|
|
|
|
def _format_output(self, output: str) -> str:
|
|
"""Formats the output of the crew execution."""
|
|
if self.full_output:
|
|
return {
|
|
"final_output": output,
|
|
"tasks_outputs": [task.output for task in self.tasks if task],
|
|
}
|
|
else:
|
|
return output
|
|
|
|
def _finish_execution(self, output) -> None:
|
|
if self.max_rpm:
|
|
self._rpm_controller.stop_rpm_counter()
|
|
self._telemetry.end_crew(self, output)
|
|
|
|
def __repr__(self):
|
|
return f"Crew(id={self.id}, process={self.process}, number_of_agents={len(self.agents)}, number_of_tasks={len(self.tasks)})"
|