Files
crewAI/docs/how-to/llm-connections.mdx
Tony Kipkemboi a7696d5aed Migrate docs from MkDocs to Mintlify (#1423)
* add new mintlify docs

* add favicon.svg

* minor edits

* add github stats
2024-10-10 19:14:28 -03:00

182 lines
6.2 KiB
Plaintext

---
title: Connect to any LLM
description: Comprehensive guide on integrating CrewAI with various Large Language Models (LLMs) using LiteLLM, including supported providers and configuration options.
icon: brain-circuit
---
## Connect CrewAI to LLMs
CrewAI uses LiteLLM to connect to a wide variety of Language Models (LLMs). This integration provides extensive versatility, allowing you to use models from numerous providers with a simple, unified interface.
<Note>
By default, CrewAI uses the `gpt-4o-mini` model. This is determined by the `OPENAI_MODEL_NAME` environment variable, which defaults to "gpt-4o-mini" if not set.
You can easily configure your agents to use a different model or provider as described in this guide.
</Note>
## Supported Providers
LiteLLM supports a wide range of providers, including but not limited to:
- OpenAI
- Anthropic
- Google (Vertex AI, Gemini)
- Azure OpenAI
- AWS (Bedrock, SageMaker)
- Cohere
- Hugging Face
- Ollama
- Mistral AI
- Replicate
- Together AI
- AI21
- Cloudflare Workers AI
- DeepInfra
- Groq
- And many more!
For a complete and up-to-date list of supported providers, please refer to the [LiteLLM Providers documentation](https://docs.litellm.ai/docs/providers).
## Changing the LLM
To use a different LLM with your CrewAI agents, you have several options:
<Tabs>
<Tab title="Using a String Identifier">
Pass the model name as a string when initializing the agent:
<CodeGroup>
```python Code
from crewai import Agent
# Using OpenAI's GPT-4
openai_agent = Agent(
role='OpenAI Expert',
goal='Provide insights using GPT-4',
backstory="An AI assistant powered by OpenAI's latest model.",
llm='gpt-4'
)
# Using Anthropic's Claude
claude_agent = Agent(
role='Anthropic Expert',
goal='Analyze data using Claude',
backstory="An AI assistant leveraging Anthropic's language model.",
llm='claude-2'
)
```
</CodeGroup>
</Tab>
<Tab title="Using the LLM Class">
For more detailed configuration, use the LLM class:
<CodeGroup>
```python Code
from crewai import Agent, LLM
llm = LLM(
model="gpt-4",
temperature=0.7,
base_url="https://api.openai.com/v1",
api_key="your-api-key-here"
)
agent = Agent(
role='Customized LLM Expert',
goal='Provide tailored responses',
backstory="An AI assistant with custom LLM settings.",
llm=llm
)
```
</CodeGroup>
</Tab>
</Tabs>
## Configuration Options
When configuring an LLM for your agent, you have access to a wide range of parameters:
| Parameter | Type | Description |
|:----------|:-----:|:-------------|
| **model** | `str` | The name of the model to use (e.g., "gpt-4", "claude-2") |
| **temperature** | `float` | Controls randomness in output (0.0 to 1.0) |
| **max_tokens** | `int` | Maximum number of tokens to generate |
| **top_p** | `float` | Controls diversity of output (0.0 to 1.0) |
| **frequency_penalty** | `float` | Penalizes new tokens based on their frequency in the text so far |
| **presence_penalty** | `float` | Penalizes new tokens based on their presence in the text so far |
| **stop** | `str`, `List[str]` | Sequence(s) to stop generation |
| **base_url** | `str` | The base URL for the API endpoint |
| **api_key** | `str` | Your API key for authentication |
For a complete list of parameters and their descriptions, refer to the LLM class documentation.
## Connecting to OpenAI-Compatible LLMs
You can connect to OpenAI-compatible LLMs using either environment variables or by setting specific attributes on the LLM class:
<Tabs>
<Tab title="Using Environment Variables">
<CodeGroup>
```python Code
import os
os.environ["OPENAI_API_KEY"] = "your-api-key"
os.environ["OPENAI_API_BASE"] = "https://api.your-provider.com/v1"
os.environ["OPENAI_MODEL_NAME"] = "your-model-name"
```
</CodeGroup>
</Tab>
<Tab title="Using LLM Class Attributes">
<CodeGroup>
```python Code
llm = LLM(
model="custom-model-name",
api_key="your-api-key",
base_url="https://api.your-provider.com/v1"
)
agent = Agent(llm=llm, ...)
```
</CodeGroup>
</Tab>
</Tabs>
## Using Local Models with Ollama
For local models like those provided by Ollama:
<Steps>
<Step title="Download and install Ollama">
[Click here to download and install Ollama](https://ollama.com/download)
</Step>
<Step title="Pull the desired model">
For example, run `ollama pull llama3.2` to download the model.
</Step>
<Step title="Configure your agent">
<CodeGroup>
```python Code
agent = Agent(
role='Local AI Expert',
goal='Process information using a local model',
backstory="An AI assistant running on local hardware.",
llm=LLM(model="ollama/llama3.2", base_url="http://localhost:11434")
)
```
</CodeGroup>
</Step>
</Steps>
## Changing the Base API URL
You can change the base API URL for any LLM provider by setting the `base_url` parameter:
```python Code
llm = LLM(
model="custom-model-name",
base_url="https://api.your-provider.com/v1",
api_key="your-api-key"
)
agent = Agent(llm=llm, ...)
```
This is particularly useful when working with OpenAI-compatible APIs or when you need to specify a different endpoint for your chosen provider.
## Conclusion
By leveraging LiteLLM, CrewAI offers seamless integration with a vast array of LLMs. This flexibility allows you to choose the most suitable model for your specific needs, whether you prioritize performance, cost-efficiency, or local deployment. Remember to consult the [LiteLLM documentation](https://docs.litellm.ai/docs/) for the most up-to-date information on supported models and configuration options.