Files
crewAI/src/crewai/tools/structured_tool.py
devin-ai-integration[bot] 22db4aae81
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Add usage limit feature to BaseTool class (#2904)
* Add usage limit feature to BaseTool class

- Add max_usage_count and current_usage_count attributes to BaseTool
- Implement usage limit checking in ToolUsage._use method
- Add comprehensive tests for usage limit functionality
- Maintain backward compatibility with None default for unlimited usage

Co-Authored-By: Joe Moura <joao@crewai.com>

* Fix CI failures and address code review feedback

- Add max_usage_count/current_usage_count to CrewStructuredTool
- Add input validation for positive max_usage_count
- Add reset_usage_count method to BaseTool
- Extract usage limit check into separate method
- Add comprehensive edge case tests
- Add proper type hints throughout
- Fix linting issues

Co-Authored-By: Joe Moura <joao@crewai.com>

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
Co-authored-by: Joe Moura <joao@crewai.com>
2025-05-26 08:53:10 -07:00

253 lines
8.2 KiB
Python

from __future__ import annotations
import inspect
import textwrap
from typing import Any, Callable, Optional, Union, get_type_hints
from pydantic import BaseModel, Field, create_model
from crewai.utilities.logger import Logger
class CrewStructuredTool:
"""A structured tool that can operate on any number of inputs.
This tool intends to replace StructuredTool with a custom implementation
that integrates better with CrewAI's ecosystem.
"""
def __init__(
self,
name: str,
description: str,
args_schema: type[BaseModel],
func: Callable[..., Any],
result_as_answer: bool = False,
max_usage_count: int | None = None,
current_usage_count: int = 0,
) -> None:
"""Initialize the structured tool.
Args:
name: The name of the tool
description: A description of what the tool does
args_schema: The pydantic model for the tool's arguments
func: The function to run when the tool is called
result_as_answer: Whether to return the output directly
max_usage_count: Maximum number of times this tool can be used. None means unlimited usage.
current_usage_count: Current number of times this tool has been used.
"""
self.name = name
self.description = description
self.args_schema = args_schema
self.func = func
self._logger = Logger()
self.result_as_answer = result_as_answer
self.max_usage_count = max_usage_count
self.current_usage_count = current_usage_count
# Validate the function signature matches the schema
self._validate_function_signature()
@classmethod
def from_function(
cls,
func: Callable,
name: Optional[str] = None,
description: Optional[str] = None,
return_direct: bool = False,
args_schema: Optional[type[BaseModel]] = None,
infer_schema: bool = True,
**kwargs: Any,
) -> CrewStructuredTool:
"""Create a tool from a function.
Args:
func: The function to create a tool from
name: The name of the tool. Defaults to the function name
description: The description of the tool. Defaults to the function docstring
return_direct: Whether to return the output directly
args_schema: Optional schema for the function arguments
infer_schema: Whether to infer the schema from the function signature
**kwargs: Additional arguments to pass to the tool
Returns:
A CrewStructuredTool instance
Example:
>>> def add(a: int, b: int) -> int:
... '''Add two numbers'''
... return a + b
>>> tool = CrewStructuredTool.from_function(add)
"""
name = name or func.__name__
description = description or inspect.getdoc(func)
if description is None:
raise ValueError(
f"Function {name} must have a docstring if description not provided."
)
# Clean up the description
description = textwrap.dedent(description).strip()
if args_schema is not None:
# Use provided schema
schema = args_schema
elif infer_schema:
# Infer schema from function signature
schema = cls._create_schema_from_function(name, func)
else:
raise ValueError(
"Either args_schema must be provided or infer_schema must be True."
)
return cls(
name=name,
description=description,
args_schema=schema,
func=func,
result_as_answer=return_direct,
)
@staticmethod
def _create_schema_from_function(
name: str,
func: Callable,
) -> type[BaseModel]:
"""Create a Pydantic schema from a function's signature.
Args:
name: The name to use for the schema
func: The function to create a schema from
Returns:
A Pydantic model class
"""
# Get function signature
sig = inspect.signature(func)
# Get type hints
type_hints = get_type_hints(func)
# Create field definitions
fields = {}
for param_name, param in sig.parameters.items():
# Skip self/cls for methods
if param_name in ("self", "cls"):
continue
# Get type annotation
annotation = type_hints.get(param_name, Any)
# Get default value
default = ... if param.default == param.empty else param.default
# Add field
fields[param_name] = (annotation, Field(default=default))
# Create model
schema_name = f"{name.title()}Schema"
return create_model(schema_name, **fields)
def _validate_function_signature(self) -> None:
"""Validate that the function signature matches the args schema."""
sig = inspect.signature(self.func)
schema_fields = self.args_schema.model_fields
# Check required parameters
for param_name, param in sig.parameters.items():
# Skip self/cls for methods
if param_name in ("self", "cls"):
continue
# Skip **kwargs parameters
if param.kind in (
inspect.Parameter.VAR_KEYWORD,
inspect.Parameter.VAR_POSITIONAL,
):
continue
# Only validate required parameters without defaults
if param.default == inspect.Parameter.empty:
if param_name not in schema_fields:
raise ValueError(
f"Required function parameter '{param_name}' "
f"not found in args_schema"
)
def _parse_args(self, raw_args: Union[str, dict]) -> dict:
"""Parse and validate the input arguments against the schema.
Args:
raw_args: The raw arguments to parse, either as a string or dict
Returns:
The validated arguments as a dictionary
"""
if isinstance(raw_args, str):
try:
import json
raw_args = json.loads(raw_args)
except json.JSONDecodeError as e:
raise ValueError(f"Failed to parse arguments as JSON: {e}")
try:
validated_args = self.args_schema.model_validate(raw_args)
return validated_args.model_dump()
except Exception as e:
raise ValueError(f"Arguments validation failed: {e}")
async def ainvoke(
self,
input: Union[str, dict],
config: Optional[dict] = None,
**kwargs: Any,
) -> Any:
"""Asynchronously invoke the tool.
Args:
input: The input arguments
config: Optional configuration
**kwargs: Additional keyword arguments
Returns:
The result of the tool execution
"""
parsed_args = self._parse_args(input)
if inspect.iscoroutinefunction(self.func):
return await self.func(**parsed_args, **kwargs)
else:
# Run sync functions in a thread pool
import asyncio
return await asyncio.get_event_loop().run_in_executor(
None, lambda: self.func(**parsed_args, **kwargs)
)
def _run(self, *args, **kwargs) -> Any:
"""Legacy method for compatibility."""
# Convert args/kwargs to our expected format
input_dict = dict(zip(self.args_schema.model_fields.keys(), args))
input_dict.update(kwargs)
return self.invoke(input_dict)
def invoke(
self, input: Union[str, dict], config: Optional[dict] = None, **kwargs: Any
) -> Any:
"""Main method for tool execution."""
parsed_args = self._parse_args(input)
return self.func(**parsed_args, **kwargs)
@property
def args(self) -> dict:
"""Get the tool's input arguments schema."""
return self.args_schema.model_json_schema()["properties"]
def __repr__(self) -> str:
return (
f"CrewStructuredTool(name='{self.name}', description='{self.description}')"
)