mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-11 00:58:30 +00:00
4.8 KiB
4.8 KiB
BedrockKBRetrieverTool
The BedrockKBRetrieverTool enables CrewAI agents to retrieve information from Amazon Bedrock Knowledge Bases using natural language queries.
Installation
pip install 'crewai[tools]'
Requirements
- AWS credentials configured (either through environment variables or AWS CLI)
boto3andpython-dotenvpackages- Access to Amazon Bedrock Knowledge Base
Usage
Here's how to use the tool with a CrewAI agent:
from crewai import Agent, Task, Crew
from crewai_tools.aws.bedrock.knowledge_base.retriever_tool import BedrockKBRetrieverTool
# Initialize the tool
kb_tool = BedrockKBRetrieverTool(
knowledge_base_id="your-kb-id",
number_of_results=5
)
# Create a CrewAI agent that uses the tool
researcher = Agent(
role='Knowledge Base Researcher',
goal='Find information about company policies',
backstory='I am a researcher specialized in retrieving and analyzing company documentation.',
tools=[kb_tool],
verbose=True
)
# Create a task for the agent
research_task = Task(
description="Find our company's remote work policy and summarize the key points.",
agent=researcher
)
# Create a crew with the agent
crew = Crew(
agents=[researcher],
tasks=[research_task],
verbose=2
)
# Run the crew
result = crew.kickoff()
print(result)
Tool Arguments
| Argument | Type | Required | Default | Description |
|---|---|---|---|---|
| knowledge_base_id | str | Yes | None | The unique identifier of the knowledge base (0-10 alphanumeric characters) |
| number_of_results | int | No | 5 | Maximum number of results to return |
| retrieval_configuration | dict | No | None | Custom configurations for the knowledge base query |
| guardrail_configuration | dict | No | None | Content filtering settings |
| next_token | str | No | None | Token for pagination |
Environment Variables
BEDROCK_KB_ID=your-knowledge-base-id # Alternative to passing knowledge_base_id
AWS_REGION=your-aws-region # Defaults to us-east-1
AWS_ACCESS_KEY_ID=your-access-key # Required for AWS authentication
AWS_SECRET_ACCESS_KEY=your-secret-key # Required for AWS authentication
Response Format
The tool returns results in JSON format:
{
"results": [
{
"content": "Retrieved text content",
"content_type": "text",
"source_type": "S3",
"source_uri": "s3://bucket/document.pdf",
"score": 0.95,
"metadata": {
"additional": "metadata"
}
}
],
"nextToken": "pagination-token",
"guardrailAction": "NONE"
}
Advanced Usage
Custom Retrieval Configuration
kb_tool = BedrockKBRetrieverTool(
knowledge_base_id="your-kb-id",
retrieval_configuration={
"vectorSearchConfiguration": {
"numberOfResults": 10,
"overrideSearchType": "HYBRID"
}
}
)
policy_expert = Agent(
role='Policy Expert',
goal='Analyze company policies in detail',
backstory='I am an expert in corporate policy analysis with deep knowledge of regulatory requirements.',
tools=[kb_tool]
)
Supported Data Sources
- Amazon S3
- Confluence
- Salesforce
- SharePoint
- Web pages
- Custom document locations
- Amazon Kendra
- SQL databases
Use Cases
Enterprise Knowledge Integration
- Enable CrewAI agents to access your organization's proprietary knowledge without exposing sensitive data
- Allow agents to make decisions based on your company's specific policies, procedures, and documentation
- Create agents that can answer questions based on your internal documentation while maintaining data security
Specialized Domain Knowledge
- Connect CrewAI agents to domain-specific knowledge bases (legal, medical, technical) without retraining models
- Leverage existing knowledge repositories that are already maintained in your AWS environment
- Combine CrewAI's reasoning with domain-specific information from your knowledge bases
Data-Driven Decision Making
- Ground CrewAI agent responses in your actual company data rather than general knowledge
- Ensure agents provide recommendations based on your specific business context and documentation
- Reduce hallucinations by retrieving factual information from your knowledge bases
Scalable Information Access
- Access terabytes of organizational knowledge without embedding it all into your models
- Dynamically query only the relevant information needed for specific tasks
- Leverage AWS's scalable infrastructure to handle large knowledge bases efficiently
Compliance and Governance
- Ensure CrewAI agents provide responses that align with your company's approved documentation
- Create auditable trails of information sources used by your agents
- Maintain control over what information sources your agents can access