Files
crewAI/src/crewai/experimental/evaluation/experiment/runner.py
Lucas Gomide 6ebb6c9b63
Some checks failed
Notify Downstream / notify-downstream (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
Supporting eval single Agent/LiteAgent (#3167)
* refactor: rely on task completion event to evaluate agents

* feat: remove Crew dependency to evaluate agent

* feat: drop execution_context in AgentEvaluator

* chore: drop experimental Agent Eval feature from stable crew.test

* feat: support eval LiteAgent

* resolve linter issues
2025-07-15 09:22:41 -04:00

125 lines
5.1 KiB
Python

from collections import defaultdict
from hashlib import md5
from typing import Any
from crewai import Crew, Agent
from crewai.experimental.evaluation import AgentEvaluator, create_default_evaluator
from crewai.experimental.evaluation.experiment.result_display import ExperimentResultsDisplay
from crewai.experimental.evaluation.experiment.result import ExperimentResults, ExperimentResult
from crewai.experimental.evaluation.evaluation_display import AgentAggregatedEvaluationResult
class ExperimentRunner:
def __init__(self, dataset: list[dict[str, Any]]):
self.dataset = dataset or []
self.evaluator: AgentEvaluator | None = None
self.display = ExperimentResultsDisplay()
def run(self, crew: Crew | None = None, agents: list[Agent] | None = None, print_summary: bool = False) -> ExperimentResults:
if crew and not agents:
agents = crew.agents
assert agents is not None
self.evaluator = create_default_evaluator(agents=agents)
results = []
for test_case in self.dataset:
self.evaluator.reset_iterations_results()
result = self._run_test_case(test_case=test_case, crew=crew, agents=agents)
results.append(result)
experiment_results = ExperimentResults(results)
if print_summary:
self.display.summary(experiment_results)
return experiment_results
def _run_test_case(self, test_case: dict[str, Any], agents: list[Agent], crew: Crew | None = None) -> ExperimentResult:
inputs = test_case["inputs"]
expected_score = test_case["expected_score"]
identifier = test_case.get("identifier") or md5(str(test_case).encode(), usedforsecurity=False).hexdigest()
try:
self.display.console.print(f"[dim]Running crew with input: {str(inputs)[:50]}...[/dim]")
self.display.console.print("\n")
if crew:
crew.kickoff(inputs=inputs)
else:
for agent in agents:
agent.kickoff(**inputs)
assert self.evaluator is not None
agent_evaluations = self.evaluator.get_agent_evaluation()
actual_score = self._extract_scores(agent_evaluations)
passed = self._assert_scores(expected_score, actual_score)
return ExperimentResult(
identifier=identifier,
inputs=inputs,
score=actual_score,
expected_score=expected_score,
passed=passed,
agent_evaluations=agent_evaluations
)
except Exception as e:
self.display.console.print(f"[red]Error running test case: {str(e)}[/red]")
return ExperimentResult(
identifier=identifier,
inputs=inputs,
score=0,
expected_score=expected_score,
passed=False
)
def _extract_scores(self, agent_evaluations: dict[str, AgentAggregatedEvaluationResult]) -> float | dict[str, float]:
all_scores: dict[str, list[float]] = defaultdict(list)
for evaluation in agent_evaluations.values():
for metric_name, score in evaluation.metrics.items():
if score.score is not None:
all_scores[metric_name.value].append(score.score)
avg_scores = {m: sum(s)/len(s) for m, s in all_scores.items()}
if len(avg_scores) == 1:
return list(avg_scores.values())[0]
return avg_scores
def _assert_scores(self, expected: float | dict[str, float],
actual: float | dict[str, float]) -> bool:
"""
Compare expected and actual scores, and return whether the test case passed.
The rules for comparison are as follows:
- If both expected and actual scores are single numbers, the actual score must be >= expected.
- If expected is a single number and actual is a dict, compare against the average of actual values.
- If expected is a dict and actual is a single number, actual must be >= all expected values.
- If both are dicts, actual must have matching keys with values >= expected values.
"""
if isinstance(expected, (int, float)) and isinstance(actual, (int, float)):
return actual >= expected
if isinstance(expected, dict) and isinstance(actual, (int, float)):
return all(actual >= exp_score for exp_score in expected.values())
if isinstance(expected, (int, float)) and isinstance(actual, dict):
if not actual:
return False
avg_score = sum(actual.values()) / len(actual)
return avg_score >= expected
if isinstance(expected, dict) and isinstance(actual, dict):
if not expected:
return True
matching_keys = set(expected.keys()) & set(actual.keys())
if not matching_keys:
return False
# All matching keys must have actual >= expected
return all(actual[key] >= expected[key] for key in matching_keys)
return False